汽门机构的构成
最基本的汽门机构是由凸轮轴、汽门摇臂、汽门弹簧、汽门导管、汽门本体及汽门座所组成。 汽门机构与曲轴的关系 汽门机构运作的动力来源是来自引擎的曲轴,由连接于汽缸曲轴上的时规齿盘以时规炼条来带动连接于凸轮轴末端的另一个时规齿盘,两个齿盘的齿比是1:2,也就是说经过四个行程后曲轴转了720 ,而凸轮轴只转了360 。有了这些驱动装置,凸轮轴便能随着引擎运转而转动,平时因为汽门弹簧的弹力作用而关着的汽门,当凸轮轴上的凸轮转到凸面时,由凸轮推动汽门摇臂,汽门便被打开,之后再随着凸面的离开及汽门弹簧的作用而关闭。凸轮轴转速是引擎转速的1/2,而进排气门也就因固定的凸轮角度而呆板的工作着。
引擎运转的基础典型
在谈汽门机构的工作特性之前,我们必须再确认一次四行程引擎的四个行程:进气、压缩、爆发、排气周而复始。 进气时进汽门打开,活塞由上往下,有如针筒作用一般将空气吸入气缸。压缩时进汽门关闭,此时汽缸形成一密闭的空间,活塞由下往上压缩油气,而压缩比就是活塞在下死点和上死点时汽缸容积比例。 油气压缩后,火星塞点火引燃油气产生爆发,由爆发后产生的大量气体将活塞往下推到下死点。爆发也是引擎四个行程中唯一的动力产生行程,其它三个行程都是需要消耗动力的,这也就是为什么四行程引擎比二行程引擎”反应慢”的原因,因为二行程引擎每两个行程就有一次是动力产生行程,而四行程则四次才有一次。爆发过后,排汽门打开,活塞由下往上推将汽缸内燃烧后的癈气排出,活塞到上死点后关闭排气门,并打开进气门,准备下一次的进气。
汽门正时
引擎运转时活塞与汽门运动之间相对关系的基础典型在现实的引擎运转时却会遇到几个问题:首先进汽门从打开到进气之前会有延迟,因为进汽是由于活塞向下先形成真空,进而由于汽缸内外压力不同才使油气被吸入汽缸内。(各位若有使用针筒吸过墨水,你便可清楚这一过程。)此汽门从开始动作到完全打开也需要时间,而基于上述原因,若能让进气门在活塞向下之前先打开,则将可充分利用这整个的进气行程。 如果排汽门在排气行程尚未开始时先打开,可以减少活塞上升时的阻力,此外活塞由下而上到达上死点时,汽缸内的癈气并未能完全的排出,这时若将排气门关闭的时间延后,便可利用由进汽门引入的新鲜油气,将残余的癈气”挤”出去,尽量减少癈气的残留影响引擎的动力输出。以上汽门与活塞间的相对关系若以具体的图形来表示,就称为『汽门正时图』。而早开的进汽门和晚关的排汽门会造成有进排汽门同时打开的重叠情况,称为『汽门重叠(Valve overlap)。引擎高转速运转时若能增加汽门重叠角度,将可抵消因高速运转而凸显的进气延迟现象(其实高、低转速时进汽延迟的时间是大约相同的,只不过高转速时进气时间缩短,则进汽延迟所占的时间比例便相对提高)。但汽门重叠角度大的『高转速型凸轮』,虽然具有较佳的高转速动力表现,但在低转速运转时,将因为汽缸真空度不足及吸入油气的流失而造成容积效率降低,导致低转速动力不足、怠速运转不稳的后遗症。
凸轮的特性
汽门机构的设计目标就是要让进气愈多,排气愈干净。除了汽门正时外,汽门尺寸、扬程、加速曲线都会影响进排汽效率。这些因素乃是由凸轮轴(Cam Shift)的凸轮形状及凸轮轴与曲轴的相对位置所控制。凸轮的形状是以一圆为基础,称为『基圆』,并由汽门的开启角度及关闭角度的1/2决定开启点及关闭点(凸轮的转速是引擎曲轴转速的1/2),在决定扬程之后,凸轮的基本雏形就已出现,最后还要根据汽门加速曲线的需求修正凸轮的轮廓。汽门全开时与关闭时的高度差就称为『扬程』(Lift),也可说是凸轮的基圆的中心到凸峰的距离减掉基圆的半径所得的值。而汽门开始动作到完全打开或关闭所需的时间长短与凸轮轴角度的关系称为『汽门启闭加速度』,以图形表现就成为『汽门启闭加速曲线』。而引擎的容积效率正可由汽门扬程与凸轮角度所构成的曲线图形来判断。曲线下所围成的面积越大则容积效率越高。 当汽门尺寸及汽门正时不变时,汽门急开急闭可得到最佳的容积效率(也就是提高汽门加速度),当然最好是瞬间打开或关闭,但这在考虑对汽门座的冲击力及受到传统凸轮系统的先天限制(必须以圆弧面接触以维持机构运转之顺畅),并不可能达成。此外适度的提高汽门扬程也可提高容积效率。
汽门机构的改装
1.进、排气道的拋光
进排气道的拋光可减少气道表面之粗糙度,其效果可分为二方面: 一是拋光后,平滑的表面可有效降低进排气阻力、减少空气流经气道时在气道表面产生停滞的现象;一是拋光后可适度的加大气道口径,这加大的幅度并不算很大,可视为拋光后所带来的附加效益,因为强度的考量无法大幅的加大。 拋光后可加快进气或排气的流速,也就是加快进气时的填充速度,在有限的气开启时间内,进量及迅速排气将残余癈气排得更干净,提高引擎的进气效率及减少残留癈气所带来的冲淡效果。
2.汽门打磨
汽门的打磨可分为两个部分,一是进汽门头的打磨;一是排汽门头背面的打磨。进汽门头的打磨使汽门头的部份,凹的弧度更大,让进汽门打开空气进入汽缸时,由于汽门头的弧度使其产生涡流,加速油汽的混合。而汽门头背面的适度打磨则可造成在排汽时在排汽门附近产生涡流,造成排汽的回压,如此一来就可再进一步加大排气管的口径,因为一部份回压的问题已交由汽门负责。
3.凸轮轴
凸轮轴可视为汽门机构的灵魂,因为汽门运作的一切性能举凡:启闭的正时角度、汽门重叠、扬程都是由凸轮的形状所决定。为了方便说明我们就以两支不同角度的Lancer 1.6的4G92 SOHC引擎改装用凸轮轴的数据来比较。首先是『扬程』:A凸轮是进气0.373吋、排气0.377吋,B凸轮则进、排气都是0.432吋。开启时间(Duration):A凸轮是进气258 、排气262 ,B凸轮则是进气275 、排气270 。而最重要的开启时机(Timing):A凸轮是进气提前20 开、延后58 关,排气提前62 开、延后20 关,B凸轮则是进气提前32 开、延后63 关,排气提前63 开、延后27 关。把这提前和延后的角度再加上一个行程固定的180 ,就会得到前面所提的开启时间。而汽门重叠角度则可由进气提前和排气延后的角度相加得到:A凸轮40 ,B凸轮:59 。由这些数据再与原厂的凸轮角度数据相比较,就可大致判断出一支CAM的基本性能。 另一项关系汽门工作特性的因素是:汽门启闭加速曲线。虽然一般的CAM制造厂并不会提供此一数据,但我们仍可以从凸轮的外形轮廓来做个概略的判断。依其外形及性能特性大致上可分为下列几种典型:A:基圆大、扬程短的,其特性是低速扭力良好,出力平顺,但高速运转则较差,适合需要平顺扭力的RALLY赛车。B:基圆小、扬程长的,其特性是高转速表现良好但低转速其则软弱无力,动力衔接性不良,尤其怠速可能抖动严重,动力要到高转速才会『突然』涌现。一般来说场地车赛都会采用此种CAM,尤其是在大型跑道上比赛的赛车,力道在5000rpm后才出现的设计是常有的。C:基圆大、扬程长和基圆小、扬程短的设计,一般量产型车量大多属于这一种,性能表现是较中庸的。这时你或许会问:道路用的改装CAM是属于那一种?我们给你的答案是:中庸但『稍微』偏高转速型的。至于偏多少则视原车供油计算机及汽门弹簧的设计余欲及匹配程度而定。当然车主能忍受的抖动程度也是必须考虑的。
4.汽门、弹簧及其它配件
汽门的重量及启闭时加速度对汽门弹簧及整个汽门机构所造成的负荷,对动力表现及稳定度、耐用度有极大的影响,若能换上轻量化的汽门,则对汽门机构运转的反应将有相当大的助益。 汽门弹簧之所以要改装,最主要目的是为了配合改了CAM后所造成的扬程及汽门加速曲线的改变,如此才能充份发挥其所欲达到的性能要求。若是CAM改变不大或弹簧仍足敷所需,则改弹簧的这笔预算就可省了。 有一项不能省的就是可微调的汽门时规齿盘,如此才可做到准确的汽门正时调整(归零)。普通的时规齿盘一齿是7 ~10 ,调整时只能以一齿为单位,无法做更精确的微调,造成汽门无法在最适当的时机启闭,如此一来将失去改装CAM的原意。 其它如摇臂,汽门套筒等配件若有需要则也要配合改用强度高、轻量化的改装部品,应付高转速之所需和减轻机构之负荷。 最后,如果你对汽门机构做了大幅度的改装,你得去考虑供油系统配合的问题,必要的话也得一并改装,但如此一来花费将是可观的!
传统的汽门机构的运作是呆板的,无法同时满足高、低转速之需求,可变汽门正时系统便因应而生,如HONDA的VTEC,NISSAN的NVCS,BMW的VACC都是这一类的设计,其中NVCS及VCSS系统改变的是凸轮轴的相位(正时),VTEC则是同时有高、低两种凸轮供切换,尤其到了6代Civic更已发展到有3种凸轮在切换,充份应付高、中、低不同转速之需求。也许在不久的未来,你我将不用再为改装CAM而烦恼,因为汽车工程师已经为这个问题做了妥善的解决。
A:刊头
B:没有汽门摇臂而由凸轮轴直接驱动的汽门机构,常见于欧系引擎,其特点是效率较高但维修不易。
C:汽门机构工作异常时将情产生极大的损害。图标为某部911受损的汽门与其新品之比较。
D:汽门正时图一例
E:汽门扬程与加速度曲线图一例
F:汽门正时与汽门扬程关系图,由曲线所围出的面积正可用来判断细进排汽之效率。
G:依既有的需求角度建立凸轮的雏型。唯轮廓需要再配合汽门启闭加速度曲线做修正。
H:房车赛中所需的是高转速时的动力输出,并不重视低转速,因此采用急开急闭的凸轮。
I:RALLY赛车需要平顺的扭力,因此采用汽门启闭加速度和缓的凸轮。
J:高效率的汽门机构是强大引擎动力的基础。
K,L(两张并列):两支CAM看似相同但正时角度却有明显不同,所以读者选用CAM时最好先参考其正时数据,并和原厂CAM之角度比较,不可仅凭外观判断。
M:可调式时规齿盘是换CAM后,汽门正时归零不可缺的配备。
N:不同的凸轮有不同的性能曲线,6代Civic的三段式VTEC,内置三种特性之凸轮供切换,结合其优点,兼顾了低、中、高不同转速之需求。
O:HONDA的VTEC系统堪称可变汽门正时系统之代表。
P:NISSAN的NVCS,只改变凸轮轴的相位,因此表现不及VTEC系统般杰出。
Q:BMW的VSCC也是改变凸轮轴相位,只不过它是由计算机控制的『连续可变』系统,有别于NVCS的两段切换。
R:谈到可变汽门正时系统可不能忘了三菱的『MIVEC』,它的原理与VTEC同小异,表现也一样强悍,1600c.c.可有175匹的实力。
【 在 sanjiaomao (猫的儿子叫可乐) 的大作中提到: 】
: 点火系统的角色
: 点火系统在引擎运转时所扮演的角色是在任何引擎转速及不同的引擎负荷下,均能在适当的时机提供足够的电压,使火星塞能产生足以点燃汽缸内混合气的火花,让引擎得到最佳的燃烧效率。 点火系统的基本装置包含了电源(电瓶)、点火触发装置、点火正时控制装置、高压
: 影响点火系统性能的因素
: ...................
--
FROM 114.249.219.*