文本生成,有99%的准确率是可以接受的,因为就算人说话也经常口误。
但自动驾驶只有99%的靠谱率是没法用的,会出人命。
大模型在很多任务的性能上有提升,但其不可解释的问题愈发严重;即使它能在技术上实现AGI的性能要求,但因为不可解释,也会有很大的失控风险。这是一条邪路。
【 在 whistlingMe 的大作中提到: 】
: CVPR基本上可以说是人工智能世界第一会,今年的最佳论文是上海AILab的自动驾驶方向《UniAD Planning-oriented Autonomous Driving》含金量不必多说,特斯拉也往这个会投很多论文哦。
: 这论文就是做了个端到端的自动驾驶方案,从各种传感器输入信号到系统,不用人工的规则,直接输出驾驶指令,效果远超过之前传统人工编码组合的系统。当然端到端这个方案一直都有,问题是之前效果就是不好,UniAD超越了,所以被奖励,其中怎么做的技术细节就不说了。
: 这事其实和ChatGPT也有些联系,因为ChatGPT几乎给全世界做人工智能的研究人员洗了脑:Bigger is Better(当然真正的研究员在21年GPT3就被震撼了),越大就是越好,效果不好就是因为模型还不够大,算力还不够多,看今年有多少做自动规划的论文中引用了大模型和这个理念就知道了。
: ...................
--
FROM 221.196.254.*