研究了下,可能还是要专门的NPU好一点吧。
传统芯片厂商(如CPU、GPU和DSP)对于深度学习市场非常重视,因此利用他们巨大体量和市场推广、销售能力,大力推广用这些传统芯片来进行深度学习处理,其本质上也是对现有的技术进行微调,用传统SIMD架构来适配神经网络。然而,由于传统CPU、GPU和DSP本质上并非以硬件神经元和突触为基本处理单元,相对于NPU在深度学习方面天生会有一定劣势,在芯片集成度和制造工艺水平相当的情况下,其表现必然逊色于NPU。
因此,星光智能一号其实是DSP,而非NPU,能够适用于卷积神经网路(CNN),而对循环神经网络(RNN)和长短期记忆网络(LSTM)等处理语音和自然语言的网络有可能就无能为力了。换言之,星光智能一号暂时只面向机器视觉任务,而不能用于语音和自然语言类的问题。其实,这种用传统SIMD/DSP架构来适配神经网络的技术思想在国际上已有不少先例,甚至有成熟的产品,例如CEVA公司的XM4处理器、Cadence公司的Tensilica Vision P5处理器、Synopsys公司的EV处理器等。
作者:吴建明wujianming
链接:
https://zhuanlan.zhihu.com/p/387313871来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
【 在 vtvtvtvt 的大作中提到: 】
: 3G不需要NPU,cpu加几个乘法单元,或者用个dsp的核就行了
: - 来自「最水木 for iPhone Xr」
--
FROM 1.90.54.*