- 主题:[讨论][心得][转载]关于数学领域和数学研究的个人看法
53# 作者: 洛奇
回复Lavita
我个人感觉上,代数几何50年代到80年代是萌芽。80年代到现在算是成长。等到有一些关于代数簇的结构的整体性的结果出来 ,才能算是进入成熟期, 也或许还遥遥无期。
55# 作者:plp归来
我认为从思想上看,人们都一样,只是每个时代的知识所具有的思维特色不同,例如functors的同调群消失就如同求函数的零点,基变换就相当于我们学的数的交换性,代数D模借鉴了函数求值域的思想。数学知识是多的,但思想是少的。
56# 作者:wcboy
数学,艺术
数学研究当然是一门艺术,艺术这个概念具有对任何事物的探究的普适性,数学也不例外。很多数学家喜欢将数学与绘画、音乐、建筑和文学放在一起讨论。所有艺术的风格可以放在一起类比。很欣赏数学画家Maurits Cotnelis Escher。分形图形、Hopf fibration,tiling就是完美的绘画,几何就是绘画。
下面是某些个人的类比(本人不喜好文学,文学就免了)。
牛顿(Newton):达芬奇(da Vinci)(oil painting)贝多芬(Beethoven)(classical music)Gropius(modern architecture,现代建筑之父)
高斯(Gauss):Raphael(oil painting,architect,最喜欢的painter,最完美的写实派,最woman的艺术家)巴赫(Bach)(classical music,最完美的音乐)
欧拉(Euler):Velasquez(oil painting)Mendelssohn(classical music)
黎曼(Riemann):Rembrandt(oil painting)Chopin(classical music)Le Corbusier(modern architecture,最喜欢的建筑师,最完美的建筑:朗香教堂)
庞加莱(Poincare)(最喜欢的数学家):Michelangelo(oil painting,sculptor, architect,最man的艺术家)Tchaikovsky(classical music)Frank Lloyd Wright(modern architecture,流水别墅)
伽罗瓦(Galois):van Gogh(oil painting)Debussy(classical music,海洋升起的感觉来自德彪西印象派音乐)
阿贝尔(Abel):Cezanne(oil painting,格洛腾迪克的motif来自塞尚的印象派,最欣赏的印象派)Schubert(classical music)
格罗腾迪克(Grothendieck):Picasso(oil painting)Stravinsky(classical music)Ludwig Mies van der Rohe(modern architecture,少就是多,用最少的表达最多的)
威滕(Witten):Dali(oil painting,最好的超现实派,类似超弦)Shostakovich(classical music,最喜欢的古典音乐家)Rich ard Meier(modern architecture)
to Lavita
所有数学家都可以比较的,至少你可以把他们划分为几个不同的粗糙等级,不同等级的数学家的成就与境界是有很大差距的,比如你不能把几个华裔数学家列入高斯、格洛腾迪克一个等级吧。至于同等级内有一定争议可以理解,等到研究程度深入和数学未来发展的不断呈现,就可能看出不同了。
庞加莱的automorphic form( Fuchsian group )和微分方程的研究也是不错的。
to plp归来
计算主要内容围绕高等代数与数学分析这种看法我以为是不妥的。新的计算构造及特征要由具体的数学问题在数学研究者的解题过程中经过一定寻找后自然呈现出来,我们不能武断确定它一定要由现在的高等代数与数学分析中的计算技术构造或组合出来,你不能事先设定这个判断,因为完全可以有大大不同于现在的计算技术出现(也许一般研究者不能脱离这个框框,但超级研究者会突破它),当然也可以是现在的计算技术小修改或附加一些小构造。
如果这样看待计算构造,就等于在研究中捆住自己的手脚,限制自由。
新的计算构造可能来自旧计算构造的扩张或抽象扩张,更主要的需求来自几何新构造的要求。旧计算构造的扩张或抽象扩张最终也必须反映到恰当的几何构造和变换中,否则无效。
个人认为,旧的计算构造已经不能满足拓扑学的潜在大构造的需要。
一般数学计算技术有数的基本四则运算、线性向量、笛卡尔空间,抽象数学计算技术有整体数学对象的全局基本四则运算(群、环、域)、模(module)直和、moduli空间。这就是思想相同而思维方式不同的结果。但二者还是有明显细节不同的,整体的东西比个体难处理,要照顾的方面很多,经常要添加一些辅助小构造才能处理。
如果一个数学研究者真真切切地意识到数学研究是一种艺术创作美(对称美、非对称美、简洁美(尽量简化复杂的东西)、普适美(让构造能对付所有范围内的情形))而不是工程制造,那么他一定会有艺术的敏感性去意识到数学构造的可能性。每个艺术创作者有不同的风格和思想呈现相同的对象,数学研究者也一样。一个有非常抱负的研究者最终会攻击数学中的大问题,无论是现存的或自己提出的。
--
FROM 163.204.84.*
61# 作者:wcboy
数学乱谈一。
数学是人类智力强度和难度最高的学科,你可以随便对其他学科夸夸其谈而主观地争论对错,但是没多少人可以或有资格谈论高端或高难度的数学。有人说理论物理的智力要求可以与数学媲美,我想理论物理最难的部分就是依靠着某些高端数学,实际上理论物理不是比美高端数学,而是显耀高端数学的强悍。
物理的idea如果脱离了数学化,就和哲学和艺术一样随便供路人蹂躏,尤其是被民科沦陷。理论物理的数学部分是唯一抵抗民科的利器。就算一个物理idea“正确”,没有数学支持,也就是一个儿童文学。民科可以得到一个正确或合理的idea,但还是不能提供正确或合理的数学构造。就像任何人可以赌对一个只有两个选项(即便多个选项)的数学猜想,这毫无难度,但这些人就可以比美数学家了吗?因此,正确的idea并不是物理成功的最主要部分,数学构造才是最重要的部分。如果没有数学支持,爱因斯坦成不了名,这就是爱因斯坦感叹数学对物理的支配,而牛顿、拉格朗日、威滕等人主动或被迫成为数学家的原因,因为数学家没有办法给他们提供更强的工具去支持物理进步,也就是说数学的进展落后于物理的要求。当今就是一个数学的进展落后于物理的要求的时期。爱因斯坦是幸运的,有黎曼给他提供工具,量子学家是幸运的,有伽罗华和李给他们提供工具。超弦学家(或别的什么学家if超弦失败)是不幸的,因为现在数学家天赋不够,没有庞加莱和牛顿级别的天才,不能提供厉害工具,所以威腾只好亲自上阵来给数学家示范上课。就算威腾的超弦最终错了,但威腾还是比那些有正确物理idea的民科要有价值多了,因为民科始终不明白没有数学的正确物理idea不比垃圾好多少。
数学没了,人类只能活在原始部落中。现代科学的发展是物理在彰显数学的荣耀。数学永远是人类智力挑战的顶峰。从历史角度观之,物理和数学互相推动,有时你先,有时我先,这甚至可以追溯到到阿基米德的工作。
数学乱谈二。
数学人中不少人抗拒给数学家排名,给数学分支的重要程度分类。这种思想就是和稀泥,这不是一种健康思想。当然排名不一定非得说出来,藏在心里也行。实际上这反映个人的数学品味,深度和把握数学趋势的能力。
高斯、阿基米德和牛顿是数学史top3的看法还深深扎根广泛人群中。这些人要么非数学研究者(95%数学系的学生不在数学研究者之列),要么偏执或偏科数学研究者。任何数学人物的成就评价都是随数学进展而呈现动态特征。一个二十一世纪的评价怎可以还停留在20世纪甚至19世纪以前的状况呢?如果在二十世纪以前,这个top3论还可以勉强存在,那么现在再如此,只能说明现代数学从来没有在这些人心中存在。数学的进展及未来可能进展不断地调整数学家的地位。拓扑学、非欧几何、复几何、抽象代数和代数几何的出现明显提高了庞加莱、黎曼和伽罗华的地位,数学上最重要的进展全都在微积分诞生以后。所以阿基米德不再属于top3了。牛顿参与微积分创建和经典力学的奠定抬高了地位,牛顿的物理学地位不能全算进来,毕竟物理还不完全从属于数学,况且微积分不是牛顿一个人作为第一创作者,阿基米德、费马、莱布尼茨都参与了,并且分析学上最强的大师不是牛顿而是欧拉,欧拉才是微积分草创阶段的第一大师,草创时期比的是谁的无穷级数功底厉害,况且欧拉其他非物理方面的数学远强于牛顿,比如拓扑学、复分析的先驱。
高斯top3地位现在还是可以保留的,但绝不是绝对第一,硬要排,也轮不到他,应该是黎曼或庞加莱。以伽罗华之才,高斯也是不能比的,高斯20岁出了不起的数学成就,但不能与伽罗华19岁出群论比,如果伽罗华活得与高斯同样长寿,那么top3里就没有高斯什么事了。论数学洞察力天才,高斯不如伽罗华,论数字计算天才,高斯不如印度的拉马努金,甚至欧拉。高斯靠的是全面不是深刻(与那些厉害的人相比而言)。伽罗华虽然只有一个成就,但就是这个自己独立支撑的成就使他吃遍数学江湖鲜有敌手。有人说他是偏才,我想如果伽罗华活长一点就可以证明他是全才,因为群论可以通吃代数,几何的。伽罗华的错,是他远远领先他的时代和高斯和他不珍惜自己的生命。伽罗华和庞加莱一样,几乎以一人之力开创一个数学最重要的一个主力构造,高斯没有一个成就比得上。
高斯虽然参与草创了微分几何和非欧几何,但只黎曼的非欧才是真正集大成者,他几何平行公理的争论转变成数值条件,即数学的计算构造取代公理构造。黎曼的复值单值化更是有用的计算构造技术,黎曼猜想只是黎曼在复几何上的顺手牵羊,另外他也是拓扑学的先驱。
庞加莱,数学成就就不用强调了,要强调的是他是仅物理次于牛顿的数学家,除非威腾能将超弦理论hold住(一旦超弦成了,威滕在物理上的威望将超过爱因斯坦和牛顿,但我本人认为可能性不大,因为正确的拓扑数学工具没有出现)。不像广义相对论,狭义相对论的功劳不能全归于爱因斯坦,庞加莱在这里仅次于爱,他的物理失败之处在于他太认同牛顿了。
很多人强调高斯、牛顿和阿基米德,实际上是强调一种思想站上风,及数学的有用性等同表面的物理应用。难道格罗腾迪克、诺特阿姨的精神没用?显然不是,并且他们也在以某种方式推动物理,这是不在表面。抽象并不等于无用,有些抽象无用是因为时机未到。可以说格罗腾迪克、诺特阿姨的抽象是极其有用的,而其他人的抽象是无用。这就是说抽象有用的程度与人的数学天赋挂钩。大多数人没有格老和诺阿姨的天才去驾驭抽象。
64# 作者:wcboy
数学问题。
数学问题是数学研究的核心。一个好的数学问题对研究人来说至关重要。对个人而言,好的数学问题不是重要和有名的,而是适合自己的。对数学发展来说,好的数学问题必然是重要的数学问题,但不一定是有名的。厉害的研究人员都追逐重要的问题。希尔伯特23问题客观上虚抬了希尔伯特的历史学术身价,因为他给很多数学研究人员一个出人头地的机会,大家都感谢他。应该说希尔伯特问题还是不错的,但现在看来,很多问题并不都属一流问题而且有的问题的太泛泛而产生不出有实质重要的东西。并且他的东西有明显的局限性,代数和数论因素远强过几何,这与他的风格和洞察力有关。尽管他的公理化推动了数学抽象的进阶,但他自己的公理化成果实在不敢恭维,格罗滕迪克的抽象和几何能力强他不少。一个数学问题的重要性有两个方面。一个是问题本身重要,比如黎曼猜想。一个是解这个问题会产生重要的通用构造,比如费马大定理。并不是难解的问题都是一流重要的,比如哥德巴赫猜想。有人会说,不能这么评判问题,因为不知道未解问题背后到底藏着什么。显然这种思想是不对的,首先你要肯定一些大数学家是有鉴赏力的,知道一些问题后面必然不会有大结果,而有的不能确定。有些问题确实背后藏有东西而当前数学界可能没有意识到,就算有些问题被解掉后,数学家没看见一些重要意义的还是有的,因为当今的数学的发展还没能力把这种意义显露出来,比如球装问题,其实球装密度只是一方面,个人认为更重要的是几何上的对称破缺,目前的数学内容和进展还没有能力把它显示出来,其实像四色问题也是如此,完全有很重要的拓扑意义,但解题过程没有把四色问题的重要性给显示出来。庞加莱猜想的解题过程也没有将猜想本身的重要性给展示出来。因此,一个问题不能只看它的解决与否,更重要的是看它如何被解,是否有重要通用方法产生已及这个方法对数学而言有多重要。
有的数学研究者只关注解一个题本身,而不在乎用什么方法。另一类则是关注解题会带来什么方法而不在乎解题,解题只是一个副产品。我想,后一种研究者才是有质量的研究者。假设费马大定理用初等方法解掉,解题人能获得很高历史地位吗?肯定不能。其实像黎曼猜想那样难的问题,就算在初等层面有素数分布pattern,这种pattern也是极端复杂的,不能被初等方法本身消化,只有更难和高端的数学技术才能提取它。就现在看来,一个意义重大难题是不可能只花几页纸就能简单解决的。深刻的问题都要花几十上百页,甚至几篇论文去进行有效地拆解构造和分类。过去一些名题的证明后来被简化,那是一些新的数学构造和idea被搞出来后才行。如果没有这些构造,是不能简化的。如果算上被使用的构造,证明并没有简化。
一般被提出来的都是显式问题,它们最多是一流问题,黎曼猜想、hodge猜想都是最顶级的一流问题,将来某位一流的大师应该可以解决它们。超级巨匠问题基本为隐式,一般人都不知道如何提出,如何开始,如何进行。一般超级问题都是隐藏在一系列问题之中,并不会单独隐藏在一个孤立一流问题里。超级问题解出来后,必然产生重大通用数学构造,比如伽罗华利用解方程来发现群结构,庞加莱利用解n体问题发现拓扑结构,这些结构即使不通过解方程和n体问题一样可以被超级巨匠发现,只需要找到合适自己风格的问题载体。
当今还有超级问题吗?答案不言而喻,那么多一流数学家艰难前进而很多问题没法理解,甚至还发明某些技术去躲避。一流数学大师是没有能力去解决它们的,因为他们没有正确的直觉来导引到那里,不知道合理发问。超级问题只有碰到合适它的超级数学天赋携带者才会被解决。一流大师每个世纪都有不少,一个世纪不产出一个超级巨匠是不罕见的,上个世纪只有格罗腾迪克一个。因此,提合理的问和发现重要构造的直觉是数学发展中不可缺少的。
--
FROM 163.204.84.*
65# 作者:wcboy
数学的偏见。
(1)国人的最长久偏见是将做学问跟做人联系在一起。学问好,人品败的最杰出人物不在少数。不少学问大家,献媚权贵,私生活混乱,挤压同行,争名夺利。
(2)数学家比较刻板,不问窗外事,不浪漫。这个印象来源于数学家清心寡欲的专注工作,实际上,很多数学家是多心,花心,也在完全不相关的事上倾注不亚于数学的心思和精力。
(3)科班出身的偏见。很多有名的大师不是科班出身或科班出身后不在学术圈内。不在学术圈内的人,其成功的代价比圈内人大得多。其实科班出身与否对大家来说不重要,重要的是,你的学习水平要达到超高的专业水平或超出绝大多数数学人。现代数学时期,格罗腾迪克,威腾就是例子,没有经历正规数学专业教育而直接就入高水平学术讨论班或交流。
(4)名师出高徒的偏见。名师的主要作用不是出高徒,而是学生通过名师获取更优势的位置。很多人认为黎曼是高斯的学生,也许名义上是,实际上他是独立于高斯的。
(5)学术水平与教学水平的正相关。绝大多数数学家是要教学的,但很多大数学家不是一个好老师,甚至口碑很差,有的数学家根本不想教学。数学成就才是数学家的衡量标准而不是教学水平。
(6)勤奋工作与数学成就挂钩。数学是一个数学家的职业和兴趣,但每个人花在数学的时间不一样。作为职业,那是被迫工作,作为兴趣,那是主动拥抱。很多数学家有不少数学外爱好,甚至花时间要超过数学,但不妨碍出数学成就。高斯之所以勤奋,那是他半年或一年工作所得成就超过其他数学家一辈子的成就。如果他只要一个大成就的话,他根本不需要勤奋。他勤奋是因为他要成为数学和物理的全才。庞加莱很有规律工作,数学很放松,很保证休息时间,克莱因比他勤奋多了,基本没有休息时间。过于勤奋容易头脑发僵,不利于思考。数学不需要太勤奋。
(7)出成就和环境、工资待遇挂钩。如果一个人这样想,他基本不是出于兴趣对待数学。你出比较出色的成果后,待遇想不上都不行,而不是相反。作为普通教师这样想,是多替自己捞好处。但想成为杰出数学家,这样就玩完。
(8)国人对基础科学的偏见。不明真相的绝大多数国人把科学等同于技术,不出经济效益,军事效益,就是无用,论文不产生具体成果就会被认为浪费资源。基础科学不是以为人类经济效益为目标的,做多经济进步是副产品。基础科学是用来探索自然的,不以功利为目的或首要目的,尤其对理论数学家或物理学家具体个人而言。但是现在很多人,包括很多学者,鄙视(应该很多是嫉妒)发SCI论文的人。论文是表现基础科学的唯一形式,重要论文的历史价值远大于有形物质文化遗产。可以理直气壮地说,基础科学就是要浪费资源的,一个文明的社会必须要容忍这种浪费。容忍整体浪费并不等于容忍个人浪费,不合适从事基础研究的个人,不应该在这个位置上呆。
(9)过度用他人来励志自己学习数学。这是比较坏的想法,因为你自已没有那个名人等同的条件。纯数学研究行为不应该被鼓励,只要少数精英就够了,其他人就做一般中小学或非研究型学校教师或应用数学去做其他功利性事务就行了。
66# 作者:zyxwvufooo
横看成岭侧成峰。“至此深以为几何比代数更有意思,图形比数字有意思”这句话本身就不适合所有人,尤其是代数和数论人。形式逻辑也有几何无法取代的作用。
其次,我赞同楼主的绝大部分言论
67# 作者:wcboy
千禧年数学难题
尽管Clay数学研究所提出七个重要数学难题,但是它们在数学中或数学家心中的分量并不相同。很明显,Riemman猜想,Poincare猜想和Hodge猜想在数学界影响更大,其中Riemman猜想排第一,Poincare猜想次之。
就个人而言,Yang-mills最重要,Poincare猜想次之。这涉及到物理、几何、拓扑、代数和数论的关系及评价问题。
Riemman猜想的直接目标比较狭隘,仅限于数论,就算Riemman直接解决了他自己提出的猜想,这个成就的重要性还比不上他的非欧几何和复Riemman面这两个成就。
Poincare猜想的直接目标也比较狭隘,仅限于拓扑,但拓扑的重要性要高于数论。当然不排除Riemman猜想在解题的过程中得到重要的几何或拓扑构造。解决Poincare猜想没有带来通用拓扑构造令人遗憾,因为它比Riemman猜想更有机会。但这不妨碍比较直接目标。但这个比较会引起代数尤其数论方面人的不满,因为谁不想被关注重视。
制造代数的目的是为几何服务,即便最简单的整数也是为离散几何服务。几何进展是创造代数的源泉,创造一个新代数结构必须为它找到几何新结构。哈代的纯数学无用论现在已经被否定。数学尤其几何仅仅是探索自然的工具而不是现实本身吗?随着物理发展,几何逐渐成为物理底层的解释基石而不是物理的应用,这就意味着几何本身朝着是宇宙的现实的方向发展。绝大多数或最重要的数学巨匠是数学和物理双栖,剩下的他们的成就都能找到物理实现。如果要到达顶级数学深度,必须在几何和物理上作出贡献。
物理的未来在于几何,而最深刻的几何和拓扑正隐藏在当代物理理论的冲突中,Yang-mills正是一个最突出的物理构造,而未来几何拓扑新构造需要通过它来透视。Poincare猜想只是这个纤维丛构造中的一个拓扑大类。现代数学首先面临新拓扑构造强力瓶颈,而它也导致一个新代数瓶颈。因此要求数学家首先要有几何洞察力,然后是代数解析力。可以说,现有所有厉害的数学构造完全无法对付现代物理更高层次困难,顶级物理学家的几何洞察力已经超过顶级数学家,很遗憾,尽管一些一流数学家在进入物理领域,但真的无法理解现代物理。
那些还抱着数学是形而上学的工具思想已经不适应顶级数学工具锻造的要求。没有突破性思想和构造,不可能有重大数学进展。
数学家和物理
数学和物理的纠缠是人类最重要知识财富发展见证。随着时间推移,几何和物理分离认识的观点(即几何形而上物理现实论)会被证明是错误的。从阿基米德、伽利略、牛顿引力、相对论及量子、最后到超弦,物理几何逐渐在底层合并。
在当今理论物理界,为什么Witten、Vafa、Nima和Penrose会被物理人羡慕,因为他们能同时通吃物理和数学。光熟悉数学是不够的,没有好的数学能力或极高的数学鉴别力(比如Weinberg,Coleman,爱因斯坦),没可能作出物理理论重大突破和认识。
最顶级的数学巨匠和某些厉害的准巨匠,没有一个不会对物理作出贡献,直接贡献或他们的理论构造在物理广泛通用的。Poincare,Guass,Newton,Euler,Cauchy,Lagrange、Laplace、Fourier直接双栖,Galois group,Hilbert space, 爱因斯坦-希尔伯特场方程、诺特的物理对称守恒双定理。
当代一些一流数学家也进入物理领域,比如Connes,Atiyah和丘成桐,他们只能说是熟悉物理,而不是较深理解。Connes用noncommutative geometry去构筑量子引力基本被物理学家无视,就如Smolin的loop quantum gravity理论一样,Smolin对几何的理解也不到位。物理的深度和几何的深度是共鸣的,Witten的理解目前来说是最深的。
如果Riemman能活到爱因斯坦时代,他应该比爱因斯坦先明白广义相对论,从他的论文最后文字看,他完全在内心预见了未来物理结构,只可惜没有实验数据来验证。
顶级数学巨匠也给顶级物理巨匠带来巨大挑战和压力,比如Poincare和Hilbert分别先于爱因斯坦得到更加数学形式正确狭义相对论尺缩方程和广义相对论场方程,尽管Hilbert物理理解不到位而Poincare只差毫厘。到现在为止,gauge theory、量子重整化、拓扑场论的几何困难,对目前已经成名的数学家是无解的。
就个人观点,如果一个数学家试图用公理体系去构筑数学理论,则基本属于江郎才尽。最没用的数学东西就是公理,最有用的是计算构造,Riemman用一个计算构造摧毁了几何的公理体系,但Hilbert又试图建新的,最后失败。 Euclidean平行公理的接受度高是因为它符合我们对现实的感觉,但是这种感觉被相对论摧毁。因此数学的构造仍然是讲实用,不实用就没生命力。正是实用限制我们胡乱建公理体系和胡乱抽象化。
逻辑和哲学的缺陷
逻辑在数学中效用被一般人和大多数科学人甚至不少数学家大大地夸大了,认为凌驾于数学之上。数理逻辑被赋予超过它价值的过誉名声。
从他们的文章来看,很多数学大家也只具有自然逻辑的水准,达不到数理逻辑人那种逻辑水平,难道这些人造逻辑强悍的数理逻辑人不比数学大家更有资格和能力获取重大数学成就吗?逻辑强并不等于数学强,相反在某种意义上,强大的习惯化的“人工逻辑”还会阻碍获取重大成就,这显示了逻辑是有缺陷的。
纵观整个数学成就的发展史,在一个重大数学进展中,数学直觉的重要性远远大于逻辑,关键突破总是来自稍纵即逝的灵感。直觉属于异禀的天赋,不是人人都有,而逻辑覆盖范围要广泛的多,而且僵化,天赋要求比较低很多,绝大多数人都有自然逻辑,人工逻辑非常程式化,并不难学,逻辑基本属于后天的。
Godel的工作在本质上宣告了人工逻辑的局限性。逻辑在无穷结构上碰到了它的致命死穴。逻辑不是万能的。逻辑产生于人对实际世界分化的认识,从本质上逻辑也产生于实用而不是高于实用。逻辑自产生起,就与哲学思考天生而自然的混在一起。哲学很大程度上是源于人自身价值观的需要,将初浅的价值观逻辑地与对自然和自身联系在一起。由于自然科学或数学开始的时候过于初浅而原始自然,哲学和逻辑甚至宗教就很容易渗透进来指导。然而更深入的数学进展,哲学和逻辑的割裂认识观的缺陷就被暴露出极大的隐患。如果两个非常主观的哲学人进行逻辑辩论,那么谁也不会被说服,一为逻辑可以诡辩,二为强烈的个人主观偏执狂的排他意识。显然这与数学和物理的要求是背道而驰,哲学没有自我进化功能,如果它否定自己就等于它完蛋。
逻辑和数学都源于实用,那么逻辑就不能凌驾于数学之上,因此数理逻辑那些形而上学的关于数学基础的内容苍白而实际作用基本为零。数学强大的实用不会为数理逻辑的数学基础所累。
数理逻辑只能在数学基本构造被建立后才会发生作用。比如在整数构造被建立后,只有基于整数的计算才有逻辑可言,而不是整数系是逻辑构造的,它是一下子被构造的序结构,不需要逻辑。逻辑只有在计算构造之后才起作用,而不是之前。计算构造源于对合适实用性的直觉。在数学进展中,直觉是第一推动力,逻辑是用来擦屁股的,是用来掩盖发现直觉的,是在拆脚手架,也就是给后来人学习用的。你不了解数学家的直觉,你就不知道脚手架工程是如何搭建的,你就不可能走进数学发现或发明的道路。直觉就是对复杂性结构的掌控,并在万敌丛中取上将或元帅首级的快速能力,它是反逻辑的。
--
FROM 163.204.84.*
75# 作者:wcboy
天智全才
数学历史成就上比Newton强或不相上下的人不少,物理历史成就高过或接近Newton的也有三四个。但将数学与物理放在一起考虑时,几乎无人超过他,能与他接近的恐怕只有一人。
Gauss与Riemman或许在数学上超过Newton,Gauss在电学上还有贡献,但完全在物理上难与Newton相提并论。Einstein在物理上超过Newton,Maxwell能接近Newton,但他们的数学在Newton面前完全不值一提。
Archimedes也是一个数学物理全才,但是他的理论难度,广度和深度都与Newton有不小差距。唯 一能接近Newton的人是Poincare。Newton和Poincare是历史上唯一两位物理和数学几乎并驾齐驱的全才,Newton没有缺陷,Poincare物理相对较弱。Poincare数学显然强过Newton,Newton物理高过Poincare。就个人而言,Einstein和Poincare共享狭义相对论。一个二十几岁Einstein和五十左右的Poincare竞争并不是一个值得炫耀的事,况且五十八岁(1912年)就去世了,所以没机会,时间和精力去搞广义相对论。假如30岁的他活在同时代,恐怕Einstein没机会染指两个相对论。
无论如何,Poincare在数学和物理体系上的完成度不如Newton,但是他的体系难度却高过Newton很多,包括他对N体的研究。
Einstein是物理王者,Gauss和Riemman是数学之王,Archimedes太弱,但他们都不是无以伦比的智力之神。历史上所谓的无以伦比的四个人中,只有Newton和Poincare才配。虽然Newton是无以伦比第一人,但个人更偏爱Poincare。按当代趋势,理论物理最终会融入几何拓扑的熔炉中成为一体,也就是,理论物理就是新几何。新几何学统一相对论与量子力学。超弦与M理论只是一个极其粗糙的过渡。尽管Witten也是Archimedes版的全才,20世纪以来无人能与他相比,但是他的数学尤其几何构造实现能力比Poincare和Newton差很远。Witten尽管数学已经比绝大多数纯数学家都强,但最后还是要倒在数学上。 尽管Witten有目前世界最强拓扑洞察力,但这个洞察力不足以帮他解决全局拓扑问题,因为解决全局拓扑问题需要超过Poincare的洞察力和天赋。
无论如何,正是对数学与物理的全面深度掌握,个人对Witten的喜爱远超过Grothendieck,尽管后者也极度欣赏。
76# 作者: weishenm
那谁的议论太极端了,十九世纪以前的数学是刀耕火种?我认为就是在初等几何做出新发现都是有价值的,并不是越新潮,越主流越好。数学的创造力,在于数学的直觉和数学的理解力的结合,前者在年轻的时候比较好,而后者在年长一些比较好,相对而言,前者可能更重要。
中国的数学不发展,主要在于大环境,而不是在于个人,包括中国的****都有作用。
二十世纪的代数几何,略相当于十九世纪的分析,它的重要是因为核心数学这个概念,似乎法国和德国的数学家对核心数学更在乎一些,这就像哲学的情况差不多。哲学并没有衰落,正方兴未艾呢。另外,关于逻辑,当我们说数学主要是研究逻辑的,强调的是指数学研究事物逻辑关系,就是研究世界、宇宙的基本原理,这在西方哲学理念中是非常重要的,比如几何图形的全等关系,或拓扑不变量等。就是发现这个世界的真理。有时候,我们中国人教数学或学数学,会把数学理解成某种技巧性的东西,这其实是错误的。
77# 作者:wcboy
几何与几何人物
几何不如数论,代数和分析等那样细化,多样,抽象和机械化。显然历史上绝大多数数学家对数和抽象数的兴趣远大过对图形。数间关系很容易衍生推进,绝大多数数学家的数的敏感性高于图形洞察力。数比较抽象,而图形是形象的。数学家比较崇尚抽象美。3维空间以下的几何图形所有数学家甚至一般人可以不费力想象,但4维空间以上图形就只有真正的少数几何学家能看出图形门道。这种门道不是高维代数或分析方程或抽象群这样简单到数学家都能知道的东西。
在几何中,代数抽象远不如几何形象重要。如果一个数学家不会在脑袋里想象一个几何图形并看清楚它,他是不可能看到重要的几何构造的。正是这个缺陷阻碍了几何学家在高维图形上取得真正有效的 进步。几何构造比代数少多了,但远比代数构造难度大太多。一个几何重大构造需要一系列重大代数构造来联合表示。这就是在20世纪以前绝大多数数学家只喜欢3维空间中的1维和2维图形的原因,这也是当代数学家对高维代数及微分拓扑绝望的原因。能够看见高维几何结构并有效分析的人一定是超级数学天赋携带者。现代几何拓扑真正在等待一个不世出的巨匠给人展示如何看高维图形。
几何上的历史重大里程碑和巨匠人物。显然,坐标引入和微积分创建及微分方程并非真正地理解几何,它们只是几何的重大代数构造技术。Euclid的几何原本只是初等几何的大杂烩和粗糙公理体系引入。欧几里得只能是一个引入者和整理者。第一个真正有意识并有效区分不同几何图形者是Apollonius在圆锥曲面上的曲线分类,它的分量贯穿整个几何历史并延伸到现在。
下一个高峰是Gauss,Lobachevsky和Bolyai的非欧双曲几何和Gauss的微分几何创建,Gauss对通用曲率和通用测地线引入才是真正几何构造的重大进展。三人中,只有Gauss才配称巨匠。
下一个高峰是Riemann的非欧几何和复几何。Riemann度量统一了所有经典非欧几何并最终在相对论中成为主宰。Riemann曲面使复几何多值结构在高维实几何中实现单值化,没有Riemann曲面,量子场论没法生存。凭这两个贡献,Riemann是无可非议的几何第一人,甚至数学第一人的候选者。
下一个高峰是Poincare的拓扑学。Euler,Gauss和Riemann都可看做拓扑学的早期引子,只有在Poincare引入同调和同伦后,拓扑结构才算真正创立,因为只有如此,才可能看到高维。但Poincare的基于同调和同伦的拓扑结构只相当于Gauss的非欧或微分几何水准,没有达到Riemann的非欧构造的深度,也就是粗糙拓扑结构。今后拓扑主结构一定是非Poincare构造。
最后一个高峰是(埃利o嘉当)Elie Cartan,Levi-Civita,Ricci-Curbastro 和Christoffel的微分几何。尽管这个里程碑来得不如前面重要,但也是几何历史绝对里程碑。这些人中只有Cartan配巨匠或准巨匠称号。联络,活动标架,微分形式,和乐绝对补充了Riemann和Gauss在考虑曲率和度量结构遗漏的重大几何特征比如parallel transport。
(克莱因)Klein的(埃尔朗根)Erlangen纲领是一个推动几何发展的重要步骤,但不是里程碑。实际上,两个图形的被认识在几何拓扑上是里程碑,它们就是Mobius带和Klein瓶,由它们引发的几何构造只有在这个世纪才可能认清,不只是非定向性那么简单。
在Cartan以后,个人比较欣赏的几何拓扑贡献来自于Edward Witten,Hassler Whitney,John Milnor,Heinz Hopf,Vaughan Jones和William Thurston。尤其Witten和Whitney。目前物理学家对高维空间的驱动需求远超数学家。数学家卡死在3维和4维流形上,以Simon Donaldson为顶。
Witten凭借其对数学和物理的通吃成为Poincare之后的唯一一个小级别的通才,他的M理论尤其体现了他的雄心,他一直想提升和超越superstring和量子场论中微扰技术的局限,但是他提取有效构造的能力明显也受到他的数学天赋的限制,注定达不到上面那些人的级别,甚至不如Grothendick,但他看到的东西的深度和广度要远超过Grothendick。在当今物理界数学能接近Witten只有Roger Penros。Penros对相对论理解不在Witten之下,天体物理要在Witten之上,但对量子论和凝聚态理解比Witten差太多,对全面物理的理解明显低于Witten。Witten的数学面比Penros要广,尤其代数几何和高维拓扑。但Penros的数学着重点不同于Witten,他研究的东西难度同样不低,也会在未来揭示不下于Witten数学的重要性,或者说他们以不同方式研究相同的数学和物理大结构,只是当代数学家还未意识到Penros重要性。总之他们走在不同方向上,但以后会发现他们之间的联系,不仅物理上,而且数学上。他们都在研究同样美丽的数学结构。
Whitney某些东西在以后的拓扑进展中会展示一些令人吃惊的重要性。其实他得到了某些东西,但他本人以及其他数学家还没完全理解,或者说数学界重视程度不够。
Hopf在某种程度上走在正确的路上,但现在人不能真正有效地推进他的工作。John Milnor在某种程度上也展示了有趣的东西。
下一个数学通才会将拓扑推到Riemann的高度,难度比Riemann大很多,并且很可能要像Poincare那样懂物理,不一定达到Newton高度。Einstein是瘸子,如果没人提供数学,他只能成民科了。
一个重大几何结构必然会覆盖广阔的数学和物理内容,只有天赋全面的超级人物才有能力做出综合判定。超级人物并非一开始就掌握所有数学物理内容。如果如此,看大量的书和论文将极大浪费他的时间,以至于他成为不了未来巨匠。因此,巨匠学习方法是不同于常人的,是边研究边学懂。即使他以前未接触过的内容,当他考虑到一定深度,他就自然理解了,不用看别人的书或概览别人的书(就更不用做大量无意义的浪费时间的习题,那些题根本不如他的课题重要,他只要解课题和课题相关的练手题),靠自己的天赋,理解比别人更深。就如Grothendick那样不需要看多少别人的书,他就写书让别人看。这就是靠天赋做研究的极端式方法,只适合于超级人物。如果你做出来的东西没有增进对已存在的主要数学物理结构理解,甚至粗暴地否定它们,可以说这样的人肯定是民科。因为未来巨匠一定会理解过去和现在巨匠的东西,他们能够进行心灵对话。比如未来巨匠不可能不理解Grothendick的主要构造概览和关键细节,比如Grothendick topology和motives cohomology, 当然他不需要理解所有Grothendick的细节东西,并不是所有东西都合理和有用。
一旦未来超级拓扑结构被弄出来,其包含的内容将远超过Langlands纲领所包括的内容,无论是几何方面或代数方面。这其中蕴含的概念可能与当代有更高层次冲突,并通过合理构造来取代当代概念,尽管从某些外形上可能“民科”(以现在观点),但实际内容大大不同,比现在有更有效更让人理解的实用数学构造,就是更真正增进对物理的理解和用新计算技术解决具体的数学“习题”。
--
FROM 163.204.84.*
物理,实验和数学
物理理论必须反应实际世界的运行。这是否是说物理模型完全由实验决定?那么历史上最成功的理论物理英雄是如何看待实验和数学在理论物理中的作用的?
我们必须信任实验吗?第一,不少人为拼数据作假;第二,精细而复杂的物理实验完全可能出错而很难发现;第三,有些实验是不可能做的;第四,有些实验都不知道往哪个方向入手;第五,即使实验出来了也不知道怎么处理。因此,要完全依靠物理实验来建立物理模型是不现实的,极其困难的前沿实验不能完全被信任。最厉害的物理大师有选择地捕捉到有价值的实验。Einstein对物理实验就是有选择信任的,比如狭义相对论只选择相信光速实验,而广义相对论基本与实验无关。Dirac的相对性量子模型则完全是数学美学的结果。很多物理学家强调数学美学在物理的极端重要性,比如Weinberg。目前的M理论就不是由实验建立的。
尽管标准模型能解释很多东西,但是物理学家完全靠实验来建立统一广义相对论和量子力学的模型基本上是不可能的,因为实验室的高能限制是非常明显的。实验不可能获取大爆炸的高能条件,即使满足弦论最低要求能量条件都几乎不可能。
自然界中同时存在两个正确而互相矛盾的物理模型,这不是自然界的错,而是物理学家迷失了重大拼图片。引力能否量子化,暗物质与能量能否解释,黑洞内部能否探查和多宇宙的存在性,实验基本不能达到目标。这些丢失的拼图唯有靠数学尤其是几何才能找到。物理模型的冲突在于我们几何理论的重大拼图的迷失,在连续的统一场中如何实现规范场的离散的几何量子化和拓扑化是关键。如果新几何不能完全弄出来,物理学家不可能从理论上解决他们的主要问题。因此,要么数学家弄出来,要么最强的物理学家同时变成最强的数学家。没有数学创造力和领悟力的物理学家在解决最基本的物理冲突中只能靠边站,发灌水论文。
只有整个物理模型建立在几何解释之上,理论物理才能摆脱它的唯象论成分而达到一个统一理论。也就是说,物理必须与几何统一,实验只提供具体参数。
不是所有的实验都是有价值的,不是所有的实验的价值是可辨认的。实验不是检验现实世界的唯一途径。有些现实世界是永远不能被有限实验检验的。在未来,所有理论物理学家都必须是数学家,而数学家不必是理论物理学家。
一个学科只有与数学结合越紧密,则越像一门科学,比如物理,计算机。像生物学那种几乎没有数学深度和门槛的学科,只是唯象论的经验,完全是一个劳动密集型的手工作坊,所以很容易靠枚举型实验发非常多的灌水论文,甚至随便都是“创新突破”一个生物学分支。所谓的交叉科学多半都是忽悠人的学科,它们是大工程而不是科学,数学门槛极低,当然对那些从事的人来说,他们是不会承认数学门槛低的,在他们眼里方程和分析就是高深了。
菲尔兹与诺贝尔
菲尔兹和诺贝尔被研究人员与普通大众推向神坛,获奖人被罩上牛人与 神人的光环,在基础研究中具有顶级学术地位。很多人和种族和国家有严重的菲尔兹和诺贝尔情结,以菲尔兹和诺贝尔为基础研究的学术奋斗目标。
所有菲尔兹和诺贝尔获得者之间有不同等级,有些被它们漏掉的人比获奖人更厉害。诺贝尔奖还出现过错误,在多年后闹笑话。菲尔兹和诺贝尔靠少数人添光,比如Einstein,Dirac,Feynman,Grothendieck;而更多的人靠菲尔兹和诺贝尔增光,这些人的等级是不一样的,因此学术人是一定要分等级的。不分等级和谐一团来抹杀更牛人的功绩,一是人品问题(是自己种族就吹,非本族就贬),二是能力问题,三是分支偏心问题(与自己有关就吹,无关就贬)。学术研究不可能每年或每四年就出重大突破,大部分年份是平凡年,大部分情形是将奖项硬性颁发出去。重大突破具有随机性,并且不同人对重大突破的判定标准不同,大部分人将标准降得很低以便囊括尽可能多的人和自己中意的人和分支,或者大部分人因研究深度不够将一些人高估。
当代一流人物不等于历史一流人物,历史一流比当代一流有价值多了。绝大多数当代一流都不可能是历史一流甚至二、三流。每一次里程碑式进展让这些当代一流中的很多的历史价值急剧下降。比如很多分支领域中人造“大问题”在当代来看非常厉害,但以更大范围和更深研究来看,只有少数人才能看出这些人造“大问题”的狭隘。很多艰难无比的东西并不是好东西,这在数论中尤为明显。很多因为理论物理暂时用上的狭隘“重大”特殊几何和代数结构因为物理进展而会在将来的调整中被抛弃。
你可以跟踪菲尔兹和诺贝尔获奖者的研究,但不能将他们用来评判研究厉害程度的标准。当你自己的研究深度不够,你就跟在这些当代潮流后面随大流是有好处的。当你深度很高并以超过那些人时,菲尔兹和诺贝尔的评判标准没有任何意义。就本人而言,绝大部分菲尔兹和诺贝尔的含金量不高。一般人很多,当代一流就是其中,历史超级人物是少数,并且是不用十个甚至五个手指可以数出。因此,做基础研究不能大事宣扬突破创新的口号,一般突破不可能日新月异,甚至不可能十年新百年异,大部分人要安心做垃圾论文,并且要劝退有兴趣激情没能力天赋的不合适的人。
很多人看到基础研究十数年或数十年没重大进展,就下一些基础研究的到顶和超级天才不再出现的论断。历史超级天才百年才几个?甚至一个可能都没有。你活着看不见是正常的。
基础研究,工程科技,经济发展和研究强国
现在基础研究被泛化了,很多工程技术的东西都被冠以基础研究。基础研究主要往理论上靠,研究目标就是要去掉唯象论和经验而被数学化。同一个实验既可以支持理论发展也可以支持工程发展,实验是中立的,因此实验本身不能算基础研究。很多应用数学工具建模的学科与数学没有紧密联系,它们只能是工程技术。只有那些被数学化而变成不可分离的部分时,学科的基础化就越高。
基础研究就是一个学科数学化的过程,其学科本身对数学发展不可缺少。因此金融数学,生物甚至化学都不能是基础研究。只有数学和理论物理(而不是实验物理)是真正的基础研究,想一想理论物理中实验只是其一部分作用,剩下的都是数学。说到底,只有数学才算终极基础研究,因为理论物理最终会变成几何的一部分。
基础研究的目的是理解自然和宇宙,而不是直接去获得经济好处。进行有效基础研究的两个必要条件:对自然秘密的浓厚兴趣,自然赋予的天赋探究才能。现实是很多没有数学含量的东西都往基础研究上靠,想沾光基础研究以引起世人注意来为自己拉经费和赞助。事实上,数学的研究费用很少,比起其他,可以忽略不计。
一个国家经济强大和先进,主要是它的工程科技的强大,而非基础研究的强大。一个基础研究世界第一的国家,其工程科技不一定世界第一,尽管工程科技要靠基础研究,但它可以应用那些已经存在的基础理论。
一个国家认为经济强大了,就能达到世界领先的基础研究,那是幻想。一个其精英人物从来没有思想自由和对自然渴望探究的基因和传统的国度不可能在基础研究中有太大的作为。即使美国,日本经济上强大,其数学研究比法国,德国,前苏联不如。
一个基础研究强国必须要有几个主要的一流强校和机构和自由思想的体制和崇尚科技的民众,比如普林斯顿高等研究院IAS,巴黎高等科学研究所IHES,剑桥,普林斯顿等。所谓一流强校,必须拥有一流当打之年的学术大师作为招牌。所以基础研究强国主要是比人才,没有几个超级和一流大师撑场,所谓研究强国一流强校就是空谈和笑谈而已。
美国经济这么强大,其本土也没有超级数学巨匠出现过,尽管一流人物不少。Grothendieck们只出现在法国。法国,德国,英国是历史最强的基础研究强国是因为他们人的基因和传统。即使它们退出政经舞台,它们的基础研究仍然不是他国所比。
以前经济不发达,基础研究搞不上去有借口,现在经济进入大国行列,基础研究还是搞不上去,仍然有借口,就是不愿承认自己不行。Abel很穷没有固定工作还要养他的弟弟妹妹,Galois身处动荡时代,Gelfand身处前苏联,为什么他们能作出成就?现在国内很多人手握有研究巨资和一大帮助手还是无能,同时众多身处底层的研究人员还认为是自己的平穷拖累了自己的研究前途。为什么所有的人都不从自身上找问题而喜欢从外部找替罪羊,国人基因使然。如果你抱怨穷,那么你可以不结婚,不要小孩,不要做房奴。如果不放弃,那么说明基础研究在你那里不重要,你的兴趣并不大。
如果你手握巨资或者不发愁的工资,你还抱怨,那只能是无能。人不承认自己无能是因为想要更多特权和享受名声。 金钱至上和学而优则仕是国人基因和传统,这样的人群无法在基础研究中有大贡献。基础研究是普世的,而不是特色的。
国内的数学家懂高深物理吗?国内的理论物理学家懂高深数学吗?国内物理人只会方程解析,国内数学人爱好数论。国内就根本没有同时对物理和数学深度理解的基础研究人。这样的环境能出一流人物吗?超级人物就更不用幻想了。为什么国内人要强调基础研究的多人合作?因为掩盖无奈。基础研究不是靠人海战术取胜,一个超级人才强过一大帮一流人才。独立研究是第一,合作是添加剂而已,可有可无。如果你强,合作者拖后腿,而且还有优先权之争。独立研究大问题是基础研究的最高境界。 一个国家的基础研究很弱而研究人员普遍眼界很低的情况下,从基础研究强国引进人才是非常明智的,这是因为不能直接拥有一流大师就退而其次拥有大师的门徒而间接获取大师的思想和风格。问题是没有自由学术土壤和制度去清理那些特色的传统垃圾,引进也会被同化,比如学术欺诈,造假,抄袭泛滥。一个对知识产权不尊重的国度,基础研究也是不会被国人尊重的。
华裔(意指华人数学家和理论物理学家)
华裔数学家中比较引人注目的无非陈省身、丘成桐、周炜良,陶哲轩、华罗庚、陈景润和新近的张益唐,物理也不少,主要是杨振宁、李政道、丁肇中、朱棣文和崔琦等。其中比较值得称赞的是杨振宁、陈省身、周炜良和丘成桐,尤其前三位。
在数论中,两个方面比较重要,一个是素数分布pattern,一个是有理点在丢番图方程分布pattern或solution(算术几何)。素数分布最重要的是黎曼猜想,如果有比黎曼猜想更重要的,那一定是所有素数的生成公式或通用过程。任意长的素数等差数列,孪生素数和哥德巴赫的价值就差很多。个人认为孪生素数比哥德巴赫要好。如果获得所有维数下丢番图方程的完整的通用分类和解法,那么其重要性不比黎曼猜想差,但个人不相信存在通用解法。一个特殊情形就差很多了。另一方面,如果解丢番图方程和黎曼猜想中得到重要通用数学结构将是了不起的,比如算术曲线计数问题和模形式方面的问题。
尽管这些人能在数学物理上留下一些脚注,但个人认为陶哲轩、张益唐、华罗庚和陈景润并不是多重要的数学家,尤其跟陈省身和周纬良比。
国人对华裔数学家和理论物理学家的吹捧太过,尤其对杨振宁、陈省身和丘成桐。比如杨振宁的“欧高黎嘉陈”,一方面是杨的数学能力问题,另一方面是杨的人品问题。陈省身应该是最好的华裔数学家,个人认为他最好的东西是Chern class和Chern-Simons,高斯-博内一般公式的内蕴证明没什么了不起,高斯-博内公式才了不起。Chern class是一个联系拓扑和复微分几何的桥梁,一个很美的通用数学结构。尽管如此,Euler示性类是更核心的东西,陈类在几何上有很大局限性,并且作为一般拓扑不变量,在拓扑中没有很高地位,主要是两方面原因。其一,作为数系,复数比实数有更大的代数范围,能解决实数计算的局限性,但是作为几何图形,复几何是偶数维的而实几何是任意维的,即实几何包含复几何,因此实几何更基本和更难,陈类不能在实几何上用。其二,从几何图形的拓扑结构来说,Euler示性类也是一个粗糙的东西,陈类也是如此。在几何拓扑上,我以前提到的几何人物对拓扑的理解都比陈省身强,还有一些没提到的,比如Kontsevich的拓扑理解能力也在他之上。
丘成桐的自我膨胀很厉害,俨然华裔数学霸主,甚至可以藐视陈省身。他的学生和追随者也不遗余力地吹抬。从学术上讲,他是目前华裔数学第一人,历史上第二人,应该不是太大问题的(不过个人更欣赏周炜良的工作)。 丘最引以为豪的是他的Calabi–Yau manifold上的工作,一个与爱因斯坦真空引力场有关的几何物理工作。丘的重要性主要是超弦理论将他托到一个较高的位置,如果超弦成为一个真正确定的物理实现,那么丘的成就可以与陈省身并列,个人认为不可能。为了统一相对论(引力)和量子论(标准模型),Witten等人将Calabi–Yau manifold作为唯一能找到的东西直接嵌入拟合了事。Witten为了他的超弦和M理论,不断地在数学几何大观园里随意出入,搜寻合意猎物,从Calabi–Yau manifold,Chern-Simons,Jones polynomial等,来处理他的拓扑共形场论,包括他自己的一些发明,都不是太满意。比如时空可以是任意维数,那么偶数维的复几何就会有问题,所以Chern-Simons就会碰到推广障碍。尽管拟合用Calabi–Yau manifold很爽,但弊端也就出来了。尽管相对论和量子论使用了特殊形式的具体方程,但它们通用构造是很清楚的,比如时空统一转换,质量弯曲转换和傅里叶概率构造转换。超弦用Calabi–Yau manifold这么一个特殊几何结构而失去了通用性解释。我相信,统一物理结构必须使用通用数学构造来解释,具体模型用具体的确定的方程式。丘成桐是一个解题型数学家,全局观不如陈省身。本人对他鼓吹的几何分析极端反感。所谓几何分析,不过是用复的、辛的微分几何的数值分析和逼近分析几何图形的几何拓扑特征,没有什么大的了不起的东西,不须猛吹。本人很反感用微分几何技术迂回处理拓扑问题,尽管能证明一些东西,但不能看到更深内容,比如用Ricci流技术解庞加莱猜想没有带来实质拓扑进步,就是庞加莱本猜想身不相对重要,藏在它身后的通用拓扑工具才绝对重要,因为球是最简单的拓扑封闭形,那我们用什么辨认更复杂的形呢?从这点讲,Ricci流没有大的拓扑价值,这不是很令人失望吗?从这里可以看出,尽管丘懂不少拓扑和物理内容,但在这方面没有什么洞察力,不如陈。
如果未来物理理论抛弃了Calabi–Yau manifold,这是不意外的,但是丘成桐的学术地位下降很多这是确定的,丘研究的东西是一些特殊而艰难的东西,而陈的东西有更高数学收藏价值。但无论如何,通过Calabi–Yau manifold引入还是得到不少漂亮东西,比如代数几何曲线的计数问题。从这一点讲,丘比陶哲轩、张益唐、华罗庚和陈锦润强不少。
总的来说,对华裔数学家,即便陈省身和丘成桐,他们的学术风格、成果和对数学的整体看法,个人不怎么欣赏,评价都不高。
国内物理人和大众对杨振宁的吹捧远超数学人对陈丘二人的吹捧,至少说明大部分数学人还是理智的。有人居然将杨列为历史前三,可见无耻无知。首先要说杨的工作是非常不错的,至少杨在物理界的地位要高过陈在数学界的地位。杨最值得称道的是他和李的宇称不对称和他的Yang-mills工作,尤其后者。正因为如此,有不少人认为他是一流数学家。可笑,难道那些一流数学家都死光了?其实这只能说杨有非常高的数学鉴赏力,马上发现他的东西和陈省身的工作的联系,就如Einstein,Dirac,Maxwell,Feynman,Weinberg等人一样,但他不是Newton,Witten和Penros那样的人,他的“欧高黎嘉陈”准确地反应了他的数学水平。杨和那些比他厉害的人不一样,他对Yang-mills真正的彻底认识也是事后的。尽管他的东西影响到标准模型的最终确立,但是他本人不具有全部标准模型Credit,Einstein,Newton,Maxwell和Dirac是赢者通吃而且体系和思想完整,Feynman的方法对量子场论的计算是非常直接的,量子论的Heisenberg和Schrodinger用公式确立了量子概率结构,这些人都比他强。而还有些量子论和标准模型建立者也不弱于他。那些懂行的人主要推崇Yang-mills的数学统摄力,那么他的数学力如何呢?Yang-mills就是一个纤维丛构造。数学上早就有一般纤维丛理论了,很平凡,不平凡的是纤维丛的通用表示理论,这个现在没出来,并且非常艰难的东西,一流数学家没能力解决它。这么说,Yang-mills本身的数学价值不太大,藏在它身后的东西的数学价值大,凭杨的那点数学能力,这个东西杨想都不要想。
国内有些物理人通过鄙视Witten来抬高杨。那就是Witten的东西是玄学而不是实证物理。太多的物理人嫉妒Witten的数学能力了,无论国际或国内,所以他们拿这个理由来贬Witten。但我要说,即使Witten的M理论被其他东西取代,Witten还是要比杨和很多人强,无论数学或物理。Witten对理论物理的掌控二十世纪中是无人能敌的,即使那些量子论创始人,我认为他不比爱因斯坦差。最终物理地位比爱低,他主要输在数学上。没有正确的数学模型出现供他使用,尽管他自己数学好得一塌糊涂,但还是功力不够。
无论超弦或它的终极版本M理论,个人看来,Witten最重要的东西不是Calabi–Yau manifold下的镜像对称而是他的将作用力与时空维数联系起来。在他之前,Kaluza–Klein theory就已经存在,爱因斯坦也想过,可见他不是第一人。但是他是第一个真正认识到这种关系的人,这将在未来几何和物理统一中充当最关键一步,怎么强调其重要性也不为过。他之前的人都不具备数学创造力而不能真正认识到这一点,他们是猜中的,所以不知道真正的数学构造。只有知道数学结构才能算真懂,Witten就是而且唯一。Witten能想到Khovanov homology和Floer homology&量子场论的联系就说明他真正看到东西了。在他的M理论中,尽管满足了他的11维超引力模型,但是他不想限制p-膜的维数,即可以考虑向上任意正维数,向下至零膜甚至还有东西。这说明他完全是开放的。Khovanov homology和Floer homology尽管是好起点,但是远远不够的。Witten受Donalson影响太多,考虑Whitney和Hopf工作不够。而且Calabi–Yau manifold把他给限制了,其实统一工作,丘的东西不是唯一出路,当考虑任意维数时,丘的东西会出问题。要统一相对论和量子论,目前的M理论肯定是不够的,肯定要做不小修改,但他对维数结构的看法一定会保留下来作为基本核心。总之,Witten的数学整体能力还是不如Grothendieck。
物理未来主要构造,就是时空统一,概率和经典统一,维数统一。维数构造就是丢掉的几何拼图,但这种量子拓扑结构极端困难当代数学家无解,只有Witten真正了解一二,多亏他的物理全面性。如果数学家不懂相对论和量子场论,那么数学家不可能解决量子几何问题,比如Connes就是在做无用功,尽管非交换几何特征必须存在,但他的拓扑功力和物理洞察力太差。
记得繁星客栈一位叫Sage的网友将杨振宁与Hendrik Lorentz类比,非常恰当。Hendrik Lorentz第一个得到解释狭义相对论的公式,但爱因斯坦和庞加莱才是真正理解的人。希尔伯特也得到爱因斯坦广义相对论场方程,但爱因斯坦才是真正理解的人。尽管Witten思想深刻远超他同时代物理人,也许过低的体系完成度和一些重大缺陷会使其学术贡献打很大折扣,但Witten还是杨不能比的,相信以后历史会给Witten一个公平的评价。相比人品,杨的学术还是不错的。
俄罗斯理论物理学家Lev Davidovich Landau 和奥地利理论物理学家Wolfgang Ernst Pauli曾经感叹自己生不逢时,没有赶上20世纪物理的黄金时代,而生在白银时代,否则自己可以做和爱因斯坦和玻尔一样的贡献。也许数学家有这种想法的少些。就我看来,就算把他们放在那个时代,他们也不一定能弄出来。好像前人断了他们的机会,实际上,理论物理和数学的大机会从来没断过,只是他们看不到和想不到,在他们那时,爱因斯坦就在琢磨统一场,尽管爱因斯坦能力不够,但那些认为自己的机会被抢的人从来就没想到过甚至嘲笑老爱落伍了,最终证明老爱没有落伍而是他们自己落伍了,老爱之所以成为老爱,就是他能看到别人看不到,能想别人不敢想,考虑的大问题太超前了。只是他们不承认天赋和洞察力的差距而已。他们为什么不把自己变成Witten,Klein,Kaluza和Grothendick呢?终归还是能力不够,视野不够。
数学是一门普适的通用技术,任何人都能学,关键是要进行合适定位。如果人群基数take一个金字塔,那么数学知识就take一个倒金字塔与其匹配,也就是金字塔顶端少数人掌握最多最难的倒金字塔顶端的数学知识。不同天赋等级的人都可以对数学产生兴趣,但他的天赋决定他掌握多少数学。很多天赋低的人认为勤能补拙,并认为天赋高的人不一定勤奋,我想这是错误的。一旦发现自己在数学的天赋,天赋高的人本身就对数学具有不可挡的兴趣,这种兴趣引导他的勤奋,可以说绝大部分(实际应该是所有的)高天赋的都勤奋,只是程度不同。所以低天赋的人不要用勤奋来麻痹自己。低天赋的人首先要找一个稳定的工作来养活自己,在这个基础上,你可以浪费自己的时间进行数学研究,尽管最终还是白费力气,但是很多人低天赋高兴趣的人喜欢这样干,而且认为自己天赋不低,奉劝他们放弃是枉然的,最终他们中的一些蜕化成民科。
大部分数学系的本科或硕士研究生是不合适进行数学研究的,但这没什么,当一般学校的老师或中小学老师并不要高天赋,有位子后还可以进行白费力气的撞大运的研究,也可以把恰当的数学运用到工程技术中去发展自己的其他能力,这都是不错的选择,业余还可以继续自己对数学的兴趣和欣赏和享受其他数学家的成果美。数学是永远的工作,人类的数学必须靠数学教师和工程师来传承载体,但是顶级名校的研究教师职位永远是高天赋人的天下。大多数人最多低层次地高兴趣地玩数学,如果你不懂高深数学内容,兴趣再高,那些高天赋的人是不会带你玩的,因为和你没法交流,比如众多民科一方面攻击高天赋人,一面又要和高天赋人交流,但就是不愿或不能学会所需知识。实际上,一旦他们学会了那些,就不会变成民科了。民科就是一些低天赋的精神病患者,幻想自己一统江湖。
任何人都可以学数学和欣赏数学,但要正确定位自己,不要无谓浪费自己的生命和家庭去做那些不可能的事,除非你有本钱支持。数学家只是一种职业而已,没什么了不起的。但是大数学家的成就确实非凡,令人仰望叹为观止。即使做不了研究,能欣赏他人也是福分也是高水平。无论如何,多学些足够数学是有益的,但要控制自己的时间和人生阶段。
--
FROM 163.204.84.*
88# 作者:yxw10
把拓扑看的太重了。拓扑太软,处理数论来有很大的缺陷。
89# 作者:wcboy
数学观念和计算技术
数学观念造就数学大局观和idea,计算技术制造具体的数学技巧。很多人看不起计算技巧,并且不愿意亲自动手计算一个具体的构造例子和物理计算,认为是脏活。尤其受Grothendick高度抽象大局观的空前成功之后,轻视计算的观点变本加厉,除了物理学家,数论家和偏微分方程家他们非计算不可,其他大部分人尽可能地避开计算。这种观念不是完全对的。很多东西只有通过具体计算以后才会真正认识,某些计算也会引导出深入的数学大局观。当然,更主要的,没有大局观的计算没有意义,很多人的计算都是没有大局观的碰运气式的。
数学计算有两种类型,一种是试图使用和组合已有的计算技巧来解决数学问题,大多数数学研究者是这种类型。另一种是创造新的计算技术来解决问题,只有极少数人是这种类型。大多数人喜欢使用旧计算技术,是因为天赋限制和惰性习惯,不能进行观念思考,这种情形是不可能取得深刻而重大数学进展的。重大数学进展是需要观念先行的。同时真正深刻的数学进展是与新计算技术连在一起的。比如微积分,Galois的群的置换技术,复数计算技术,拓扑中的同调与上同调技术,同伦技术。大观念与新计算构造是相辅相成。没有新计算技术,大观念要么是不能达成的,要么是空架子而不深刻或深入,所以需要基于计算构造的表示论。发明新计算构造需要很高数学洞察力,一般数学研究者根本做不到。
很多重大数学问题是非要爆算不可的,即数学观念先行也不可避免爆算。本人很欣赏那些有大局观又能爆算的数学人。个人认为Grothendick的较软的计算能力阻碍了他的很多深入机会。
91# 作者:wcboy
To yxw10:
拓扑太软这个判断可以从两方面看。一个是它本身,一个柔性拓扑等价类可以对应无穷多个刚性代数簇,也就是说,一个拓扑形对应无穷多个几何形(无论光滑与否)。另一个是它得发展阶段,从目前看,目前拓扑构造技术太粗糙和定性分析性质比例太大,显得它的刚性计算能力太低,不能像基于微积分的微分几何和基于矩阵技术的群论普遍地处理物理问题,因此目前拓扑是软的。 正是后一个原因,我才说目前的拓扑处于不成熟阶段。这不是拓扑本身的原因,而是到目前为止,几代数学家的技术积累受到了天赋能力的限制而不能看得更深更远。
拓扑重不重要是由数学发展呈现出来的。拓扑经历了Euler,Gauss,Rimann,Poincare到Witten这些数学物理的最顶尖人物的疏导汇聚成一股巨大的洪流,它是整个数学全局尤其几何必须拿下的重大里程碑式桥头堡,不跨过拓扑,数学物理的大局不能突破。
你不能把拓扑作为一个独立的学科分支看待,尽管确实可以形成一个独立分支。实际上,你应该以上面那些全才式巨匠的眼光看,在他们眼里,无所谓分支不分支,他们是跟着数学物理问题走的,研究走到这一步,必须看到这些问题并去解决,在他们眼里,拓扑就是几何的延续或更高阶段的东西,就像数论,代数,抽象代数,代数几何这样,一步步走向更高,更深,更广阔的天地。在全才眼里,在他们研究问题时,他们不会用物理,微分几何,拓扑,数论,代数这样的分支来看待自己的研究,这就是他们随随便便在任何领域或大多数领域或重要领域连续不断地出很厉害的成就。一般数学家或物理学家是做不到的,所谓的很多大牛人一辈子只有一两项留名甚至脚注式留名。这完全是不同的研究境界。难道是巨匠们运气太多太好?这说明了天赋不是和运气捆绑在一起的。
每个独立数学分支都有自己的独特内容,其他分支不能处理它,这是相当自然的。不是所有数论问题都必须靠拓扑来解决的。一门分支的很多常规问题都可以在其内部获得处理,但那些极端重要和困难的非常规问题都不是该分支内部所能解决的,它们需要在整个数学物理范围内来靠其他现存或未来新出现的分支来整合解决,其中新分支或构造带来新的数学物理认识,这才是数学物理发展中最有意义的东西,它们增进人类对宇宙秘密的理解。
群论是少数几个最高等级的通用计算构造,能在所有分支中广泛存在。即便如此,它也不能解决拓扑和物理的所有问题。实际上,群结构在拓扑中作为拓扑不变量还是太粗糙了,也就是说, 拓扑结构比群结构要精细,这就是为什么几何学家要寻找其他表示构造来定义拓扑结构。但通过拓扑群可以看到拓扑结构的很多重要方面。现代数论的很多重要方面也必须通过群结构和拓扑结构来窥视。拓扑突破不仅限于自身,而且也会为其他分支带来新认识,尤其是对硬分析,物理和微分几何带来较大全新认识。就个人感知而言,拓扑比数论要难很多。数论的数结构和运算都是很机械的固定的东西,研究者容易控制研究范围,拓扑就不是这样了。你首先就要找到合适拓扑结构和运算构造,然后再谈研究。如果选错了,研究就没意义了或只有局部结果。尽管黎曼猜想很难,但拓扑中有比黎曼猜想更难的对应物,也就是拓扑素结构的定义与分布规律,它的代数结构远比素数难,看看那些极端困难而精细的拓扑不变量几乎不能真正通过手算,即使计算机对简单情形都很难完成。
92# 作者:wcboy
精彩的计算
计算 本身就是数学的核心灵魂,没有计算的数学走不了多远,就变成耍嘴皮的哲学和文学了。历史上有几个精彩的计算篇章,并产生了几个令人叹为观止的计算天才。
在微积分时代,无穷级数和物理的计算竞赛导致了微积分的诞生,催生了一大批历史超级数学家和一流数学家,还有更多的二三流数学家。Euler,Bernoulli家族,Newton, Leibniz, Lagrange,Laplace,Fourier, Eisenstein,Cauchy, Poisson,Gauss, Ramanujan,Dirichlet等等。其中Ramanujan,Euler,Eisenstein和Gauss的计算能力尤为让人叹为观止。无穷级数的计算竞赛是历史上最惊人的计算。
下一个惊人的计算是Galois和Abel在五次方程可解性上的计算,最终导致现代群论的诞生。有限群的计算竞争达到最高潮,这绝对是人类仅次于无穷级数计算竞赛的一次精彩计算。
Poincare在天体力学的单人独力精彩的微分方程计算最终导致了现代拓扑学的诞生。
94# 作者:yxw10
计算本身就是数学的核心灵魂,没有计算的数学走不了多远,就变成耍嘴皮的哲学和文学了。历史上 ....Eisenstein有什么特别厉害的地方,Gauss对他赞不绝口,你也这么夸他?
我觉得你可以弄一份书单推荐,那必然是别具特色。特别是拓扑方面。
97# 作者: wcboy
To yxw10:
实际上寻找素数规律的计算也是数学史上精彩的计算。这主要指黎曼猜想的最终形成和基于素数互反律的形成。早期在这上面进行工作的人必须进行大量的手工计算和进行数字观察实验才能提炼出规律,这在没有计算机时代是极端困难的工作。观察大量数字并找出隐藏很深的规律需要极端高的数感,只有惊人的计算天赋才能完成。
Ramanujan和Eisenstein在级数上的工作跟modular form和有限群分类和string theory都发生了联系,主要体现为最大魔群的月光猜想(monstrous moonshine)与超弦的时空维数的联系。这是一个非常美的和值得称赞的数学结果。
当然,本人不认同Gauss对Eisenstein的过誉评价,这可能与Gauss的数论价值取向有关。
看大量的书不一定值得,要根据个人的情况,但是有的东西是必须看的,要看合乎自己取向的好书。下面是个人爱好,但不会适合每一个人。
1.Wikipedia数学和物理(英文版),在大部分情况下,你能找到你需要的东西,通过它和它提供的外部链接。
2.微积分和数学分析引论(Richard.Courant和Fritz.John)+常微分方程(V.I.Arnold)。
3.复分析(Lars V.Ahlors)。
4.代数(Michael Artin)。
5.代数数论讲义(Erich Hecke)。
6.域和伽罗华理论(Patrick Morandi)。
7.椭圆曲线和模形式引论(Neal Koblizt)。
8.曲线与曲面的微分几何(Manfredo. do Carmo)。
9.代数几何(Robin Hartshorne)。
10.微分拓扑(Morris W Hirsch)。
11.代数拓扑(william Fulton).
12.扭结引论(Richard H Crowell和Ralph H Fox)
13.三维几何拓扑(William Thurston)。
14.几何和想象(John Conway, Peter Doyle, Jane Gilman, Bill Thurston)。约翰康威应该是我非常欣赏的数学家,他搞的所有东西我都喜欢,Bill Thurston就是William Thurston。
15.Witten的一些综述性文章。
这些都是个人喜好圈定的好书,这不等于说其他书不好,好书太多了,只要弄一些读就够了。
--
FROM 163.204.84.*
102# 作者:SCIbird
天智全才
数学历史成就上比Newton强或不相上下的人不少,物理历史成就高过或接近Newton的也有三四个。但将 ...
虽然偶也是Poincare的粉丝,但还是觉得楼主论述有失偏颇。特别是小爱同学关于两个相对论的创立,我始终觉得关键在于对物理本质的洞察力,而不是数学洞察力。
尽管很多偏好几何的XX学家,认为物理可以融入到几何当中,代表如广义相对论和弦论。但个人始终认为,太多的人形而上学地将数学和物理进行某种意义下的“等同”,本身就走偏了。当然,也可以认为我这种观点也是形而上学。
Eisenstein有什么特别厉害的地方,gauss对他赞不绝口,你也这么夸他?
我对现代数学了解不多,只说一点初等例子。
Gauss应该是称赞Eisenstein极高的天赋,这从三个例子可以看出:
1. 多项式理论中的Eisenstein判别法,非常简单和巧妙;
2. 二次互反律的Eisenstein证明,非常优美;
3. 椭圆函数中的Eisenstein级数,据说是类比余切级数cot x的级数展开想到的。Poincare构造自守函数时似乎也类比了Eisenstein级数。
这三个例子,也就大二水平,大家可以读一读,但想法极其精妙(即便是现在看来)。
105# 作者:wcboy
To SCIbird:
不知道你对(狭义和广义)相对论的创立的具体历程了解多少,如果你真了解了庞加莱的论文内容和庞加莱当时的背景以及后人的争议性评价,你就不会这么说了。 在狭义相对论上,爱因斯坦并不具有全部credit。爱因斯坦能想到的所有物理思想庞加莱都想到了,并且先于爱因斯坦发表论文,仅仅只是在同时相对性问题上犹豫了,后来反悔否定自己以前发表的论文因为选择拒绝同时相对性,至死拒绝狭义相对论,这是因为他对天体物理的痴迷而选择牛顿时空观。是老年痴呆症让他晚年胡言乱语,从而丧失了他应该有的credit。
正因为庞加莱实际想到和爱因斯坦相同思想,以及庞加莱先于他发表正确的论文,让爱因斯坦感到优先权之争,爱因斯坦对庞加莱是有嫉妒的,在他去世之前,他才释怀,终于承认庞加莱在狭义相对论上的贡献,也就是仅次于他的贡献。(原因可能在于,爱因斯坦有了意义更加重大广义相对论的几乎全部credit,所以就不在意他人与他共享不那么意义重大的狭义相对论了,而且可能那时他变得宽容了和实事求是了,也相信历史或后人会认识到Poincare的价值,何不做个顺水人情,留个美名呢。)
为什么同是爱因斯坦拒绝量子论,但被人承认他在量子力学的创始人之一的地位呢?因为很多人对庞加莱的数学身份带有色眼镜,不过历史最终还是承认了他,尽管他拒绝了狭义相对论,首先他的论文是铁定的成就。
从狭义相对论与庞加莱的纠纷和广义相对论和希尔伯特的纠纷,可以看出爱因斯坦对优先权旁落的担心不亚于牛顿对微积分优先权的担忧,这些有书信记录的,你可以在网上找的资料。因此,爱因斯坦和庞加莱在物理本质的洞察力上的问题不是那么简单的论断。
不懂事的公众和偏心的物理系学生对爱因斯坦是极度神化的,公众只知道爱因斯坦不知道庞加莱,这都是新闻宣传对结果。
另外,庞加莱还了解到了质量和电磁能量的等价关系,也是因为这个原因拒绝了,大概是上了五十,人变得保守,如果他是三十岁,也许是另外结果。另外庞加莱等关于以太的看法虽然目前被主流抛弃,但是说不定以后以另一种方式回来,有少数物理学家和超弦学家承认以太,有一句超弦学家名句“nothing is something",我个人也倾向认为以太是必须存在的。弦景观理论是容许多宇宙存在的,这意味着基于目前特殊物理常数的物理模型,包括爱因斯坦广义相对论,也是一种特殊物理在一个相对独立的局部宇宙中。谁敢保证多宇宙以后不会存在呢,以前不是出现过地球中心论,太阳中心论吗?量子论与相对论的冲突迫使人们考虑更广泛的东西,甚至更激进叛逆的东西。如果人们遵循常规想法,那么相对论和量子论就不会诞生。
正是庞加莱坚持牛顿时空观来研究天体力学,阻碍了他接受狭义相对论,但却同时导致了现代拓扑的诞生又催生了基于混沌的动力学的研究,庞加莱在天体物理上也刻下了自己的丰碑。这是不是看起来很矛盾呢,很不可思议呢?
物理与几何的统一是我个人的看法,没有知名数学家和物理学家这么认为,Witten也不例外。但是很多物理学家确实提到物理的几何化,这不仅仅是超弦学家,杨振宁和爱因斯坦也是如此认为,请查看杨的关于爱因斯坦对二十一世纪理论物理学的影响的谈话就知道了,在此谈话中,尽管杨褒爱贬庞,但还是事实地陈述了庞的狭义相对论的贡献。
108# 作者:SCIbird
To SCIbird:
不知道你对(狭义和广义)相对论的创立的具体历程了解多少,如果你真了解了庞加莱的论文内容 ...
印象中,爱因斯坦从来没有说自己对狭义相对论贡献是绝对的,他甚至认为就算他不发现,别人照样能。至于庞加莱对狭义相对论的贡献,现在基本都承认了吧。
希尔伯特率先得到广义相对论场方程完全由可能,但这不能说是他创立了广义相对论。更可能是爱因斯坦把大部分物理工作铺垫好了,而希尔伯特深刻地洞察到其背后的数学方程,但爱因斯坦的奠基工作毋庸置疑。封口和奠基不能等同,就像朱曹工作与佩雷尔曼的工作的对比。
我对超弦理论等现代理论物理了解不多,不好评价。但个人不太看好所谓大统一终极理论。
注:个人对数学(包括几何)和物理不等同观念源自下面的想法。设想,就算没有欧式几何、黎曼几何、甚至相对论,超弦理论等等,地球还是围绕着太阳转。
109# 作者:wcboy
To SCIbird:
我对你的言论感到困惑。
谈谈我对Poincare、Hilbert和Einstein等人的看法吧。
1.Newton和Poincare是历史上仅有的物理和数学贡献几乎并驾齐驱的全才。如果不认可,请举例说明有谁能在与他们的数学贡献相当的情形下达到他们的物理水准?Gauss?Riemman?Euler?请举例说明有谁能在与他们的物理贡献相当的情形下达到他们的数学水准?Einstein?Maxwell?Dirac?
2.Poincare和Einstein共享狭义相对论,Einstein贡献在前,Poincare在后,相差不多,他们是狭义相对论的主要创始人,如果还有,算上Hendrik Antoon Lorentz。狭义相对论的最主要原理是The Principle of Relativity和The Principle of Invariant Light Speed。Poincare比Einstein先获得。Poincare拒绝狭义相对论严重降低他的credit,否则Poincare排位在Einstein之前。难道现在有人还认为Poincare不应该分享狭义相对论吗?Einstein都承认了,你不承认?
3.广义相对论的大框架全是Einstein的credit,但广义相对论场方程不是,Hilbert应该分享credit(目前也被历史认可了,Hilbert作用量),Hilbert数学形式更加合理,为现代所用。如果不去考虑去看英文资料,卢昌海个人网站上有很好的资料介绍。
我的发言就是这样的,不知道哪里给了Poincare过高的赞誉或贬低了Einstein的贡献。我看到的是物理人对Poincare的贬和对Einstein的神捧(应该是基于对Poincare数学才能的嫉妒和尽可能地降低数学在物理中的影响,这和Einstein的看法正相反),更多不明事理的把该Poincare的credit都算到Einstein头上,典型的就是认为狭义相对论原理都算在Einstein头上。现在物理和数学是分开的,作为数学人,至少应该不偏不倚地地评价Poincare,而不是站到物理人的角度抬高Einstein。
不知道你所说的大统一终极理论是什么。超弦或M理论所追求的大统一是统一相对论和量子论,也就是引力和其他作用力。难道你认为它们不应该统一吗?整个时空或我们的宇宙就活在一个统一场中,作为统一场,所有交互作用它们在原理上应该而且必须统一,统一不了,那是我们知识的缺陷所致。它们统一了,并非所这个统一理论能解决一切问题。这就是物理学家所要表达的意思。个人认为,二者的统一也不能解决引力量子化问题,个人认为引力不能完全量子化。
尽管我不完全赞同超弦理论的所有东西,但其中有很多合理的东西,这不是轻易被否定的。至于它到底有多合理,就交给未来发展来回答吧。即使一个不完备的物理模型,也是有它的价值,这和民科的东西是不能混淆的。比如Geoffrey F. Chew在string theory之前所做的S-matrix approach也是有价值的,这和民科有本质不同。
110# 作者:SCIbird
To SCIbird:
我对你的言论感到困惑。首先谈谈我对Poincare、Hilbert和Einstein等人的看法吧。
1. 没有异议,完全同意。
2. Poincare对狭义相对论的贡献不亚于爱因斯坦,我也基本没有异议。但是如果Poincare能再活20年,很可能建立广义相对论,我就不这么认为了。当然,阁下不见得有这个想法,可能是我对您的文章外延理解有误。另外,个人认为Poincare的伟大也无需狭义相对论来衬托。
3. 希尔伯特独立得到场方程的贡献不应该被抹杀,殊途同归太正常了。
4. 爱因斯坦造神确实有些过分,就像高斯(我的偶像)一样。其实,大肆造神的人中还真没几个踏实读过爱因斯坦文集和高斯全集的,只能说这个时代太浮华了。
5. 弦论等就不讨论了,个人的看法纯粹是哲学上的。
--
FROM 163.204.84.*
115# 作者:wcboy
数学环境
对于数学菲尔兹来说,今年不过又是一个平庸之年而已。像J.H.Conway那样的比菲尔兹差么?很多(其实是绝大多数菲奖)数学全面性,创造性数学技术和看数学整体的方式都不如他。女性获奖不过是一个找机会给女性颁奖罢了。真正值得敬佩的女数学家只有一个,那就是Emmy Noether女神,历史上比她强的男人没几个,那都是数学巨兽,艾米她本身也是巨兽。后来者也只有那只不知死活的代数几何巨兽能与之比。平庸的菲尔兹在他们前不算啥,尽管如此那也不是中国数学人所能比的。
为什么中国环境就不能出菲尔兹这种级别的数学家呢,而海外华人倒也有三个,但陶哲轩跟中国文化没有任何关联。中国的历史已经证明了中国的所谓数学奇才最多也就是普通奇才而已,这种级别的奇才需要环境培养,自我培养达不到高级别。中国人(一般是非数学研究人员)总是说中国的大学以前的数学教育比美国和印度强(很少说法国,大概法国不起眼,否则中国非数学人会闹更大笑话,因为他们压根就认识不到世界第一数学强国),这完全是一个不正确看法,好的教育环境是一个整体,不能分割来看,英式教育没有像中国教育那样一股脑地将你不需要的东西全倒给你,压给你那麽多作业,而是让你自己思考,让你选择,那是什么?那是民主,自由和独立思考。看似他们的教育输在起跑线上,其实不然,他们获得了做研究的习惯和方法,对喜欢的,无论数学物理与否。世界需要那麽多数学家和教授干吗?但一个好的教育保证那是精英的需要。大多数人也就干干不超过算术需要的数学而已,但他们的数学足以帮助他们的其他专长,比如他们能专注地干好专业技工,园艺工,护理,职业运动员,职业演员,作家,艺术家等。这不是很成功的教育吗?干好一门自己喜欢的就行,不是人人都能做数学家,只有数学研究最好的能做。喜欢数学,数学竞赛和考试好,和能做数学, 他们不是一回事。很多不能做数学的人喜欢数学,这类人是什么?反正大学前教育不过通识教育,为考某些专业,很多有能力的人为达到自己喜爱的专业(比如医学,法律,计算机,金融,数学必须高分)他们也会用心去学(尤其很多女生),而且考试成绩不比那些日后数学人低,他们是什么人?那么,什么人会去参加奥数竞赛,那一定是喜欢数学的人(在国外不是中国)。但是所有喜欢数学的人都会奥数?不会,有人怕高强度考试,有人认为既喜欢数学有喜欢物理,还没决定好,那不是更大的天赋吗?但是能做数学有喜欢数学人的考试和奥数再差也是有谱的,只要他参加的话(不是有过比赛第二名嘲笑第一名的笑话吗?历史上谁会记得第一名,但会记得我)。英式教育能一下找到所有数学天才吗?不能,但大部分。因为少部分数学天才同时也是其他天才,还没决定好,这不有选物理,历史,工程,医学,建筑,音乐的多面天才漏网。还有更奇特的,一个数学天才还没发现自己是天才,只是认为自己数学比一般人强而已,多年以后才认识到自己,才从新进入数学圈子。但是英式教育也为这些人留了后门,从新发现他们。中国数学教育环境是这样的吗?不是,那数学课后培训,奥数培训是干嘛?考高分。考高分干嘛?去搞金融,计算机,生物,医生,留校,反正哪钱多安逸往那转,钱,权,美女,资源,还有一部分呢?出国,好主意。出国的大部分干嘛?反正不搞数学。搞数学有么?有,几乎都是国内那几所出国培训名校的。那么中国出国培训名校不是很好嘛,为什么他们要出国?出国好,出国有大师当导师,国内没大师,没办法。出国后再被邀请回来当大人才多好,钱又多,名也有,还可以。。。,当然更重要的还可当大官(查一查就知)。当然,还有极少数寥若星辰的几个在外结果了,真心喜欢数学,不把自己年华浪费在国内。良心好的,老了回来不坑人,不花边,不好的就不说了,都知道。
说了这么,到底就是国内数学教育环境对那些漏网数学奇才又没办法进出国培训名校的(其实进不进无所谓),最佳出路是想尽办法出国,去享受名师或名师高徒的培训,这样才能达到高级别,一个数学奇才数学环境恶劣又没名师指点,是难幻想靠自我培训出名的,对普通数学人就更不可能了,还是安心当数学老师为好,除非高斯、阿贝尔和代数几何巨兽,印度病人级别,中国没可能有这样的人物(有了才能说还要看在现实中存活度)。
对了,印度三哥的数感是比中国人强的,阿拉伯数字也是他们弄的。
还是布尔巴基说实话,数学是纯粹为了人类心智的荣光(说为名,钱,房,权和美女了吗?实在,纯粹,真,感动,书中没有黄金屋,书中没有颜如玉,那些都不是数学)。所以俄罗斯可以有佩尔曼那样的纯粹人,伊朗女人也可以得奖,阿三哥更不赖。汗。
数学研究态度
从Newton,Leibniz, Fourier等人不管严密先管出结果,到Cauchy,Weierstrass的形式符号严格化,再到Cantor,Dedekind更加严格化,微积分演变到现在变成了(实)数学分析,增加了很多很多计算以外构造性说教性质的晦涩难懂的东西,美其名曰分析。这个东西爽不爽?不爽,逻辑悖论和ZFC不让人爽,Godel就更不让人爽。不爽但有实用,你不能拒绝,不能。说到底,就是如何处理无穷问题,Newton他们都是大忙人,想的问题太多太重要了,脑袋不可能再进一步细化,先用光滑潜无穷小几何形足够得到他们想要结果,就行了,那里还要那么啰嗦,不是吗?如果那时开始啰嗦,现在的物理进步进程就会大大放缓。后来人为了保住成果,就将就搞出一个 (ε, δ)形式化来处理函数化潜无穷。仍然不理想,Cantor,Dedekind就搞出来整数化实无穷。这是一个显著进步,被定格为实分析,最后给它配一个几何化,就是点集拓扑,最重要的就是Hausdorff space,开闭紧。在这里,你看到什么,没有计算的构造性说理分析,实际上最管用的还是 (ε, δ)形式化,只有他管计算。Cantor的成果确实是分析学的最高成果,因为所有数学最终要用数来支撑,我认可。但是Cantor活着时受到了Poincare和Kronecker的攻击,难道后两者疯了吗?不是,Poincare的才华足以压制历史上所有数学家,他的攻击是对的,即使现在他在世,他还会,因为Cantor确实有不爽。所以攻击是对的,承认也是对的。尽管你的代数构造是对的,你要找到大量有效的几何形来为你辩护,不然别人有权不承认你的,甚至将你当民科,Cantor找到一些(Cantor集),后人也帮他找到一些。Hermann Günther Grassmann就没那么幸运了,关键就是当时没有几何物理支撑有远脱离当代数学,不被赏识是非常合理的。想想看Gauss都不敢轻易发表双曲几何,怕民科,因为那种几何要物理测量支撑和应用,他为啥大地测量,疯了,真喜欢搞土地测量上瘾,还不是为他的微分几何和双曲几何找支撑,Gauss研究态度真人也。没的说,再说他也不缺一两个功绩。
数论为什么会被那麽多数学人喜爱呢?主要是爽,没那多废话,不会计算,没有数感,就不要入错行。数论又不爽的吗?有,一下就看懂了,民科都敢勇敢地挑战数学家,摘明珠,还要你承认。
处理无穷问题,我非常欣赏J.H.Conway的Surreal number和Georg Cantor的Transfinite numbers,并且认为J.H.Conway的更好,而且就是对的,但我现在不会支持他们,因为现在没有任何几何物理来逼出他的应用,但我深信将来一定会,也就是他们的未来数学地位一定会比目前高。相比之下,Abraham Robinson的 Non-standard analysis就是垃圾,为什么那么晦涩重复。所以凡事涉及无穷的东西不要轻易回答,比如民科式连续统研究,去辩论1=0.9999...。但是个人绝不会去欣赏点集拓扑实分析那些东西,更会拒绝ZFC,会接受Godel。
数学的目的就是几何形来配置数和透过形来看数,黎曼猜想不就是这样吗?简单?难?都是又都不是,其实是超级难。所以,一个论文的被接纳与否,不都是对错问题,即便数学也会如此。高端论文也要接地气才行,不然人家也不认可你,除非你早有地位。从这点讲,格罗滕迪克是幸运的,早早就参加了牛逼辩论班,得到一帮牛人赏识和交流理解,不然那么一大堆新词和用法和那么长的东西,谁愿看,这就是圈子重要性。如果独斗又没名气,那么高端必须接地气,还要被欣赏。一句话,开创工作不是那么容易被接受的,伽罗华,阿贝尔不就是典型吗?很多一波三折,可能还有埋汰的。保守型工作总是容易的和价值少的。数学研究非常不容易,要让同行理解也不是论文到就成功的事,你写上500也有创新名词构造的名头又大又响的论文试试,看多少人看你。所以你要体谅别人的话,短点多次。
数学前沿研究
如果一个数学人要做出数学上的成就,那么他必须进入数学前沿阵地进行有效歼灭战,解决至少一个有当代影响甚至历史影响的数学问题。数学前沿涉及最难啃而又影响深远的著名大难题(如克雷数学机构提出的七大著名难题)或者艰难的次等的一般性浅层难题(如哥德巴赫猜想),这些都是已知的未知。但是更重要的数学前沿是涉及未知的未知(比如拓扑学和物理领域),这需要你首先发现问题,然后再去解决。
数学前沿是有很多层次的。最低层是那些已经公开在印刷物的最新或较新的数学问题和潮流。中间层是仅仅在数学界的数学家(尤其最厉害的著名或隐藏数学家)之间交换的零碎隐晦数学看法和技巧,他们不出现在公开刊物上。最高层是那些仅存在在最厉害数学家或隐藏数学天才的大脑中的数学问题或模型,并且不为除自己之外的人知道,没有任何传播。
那么一个数学人或初级数学研究人如何进入数学前沿呢?最低要求,如果考自己,那么你就要收集你感兴趣的公开在印刷物去追潮流做公开问题。中级要求,做一个数学大师的研究生,进入数学家(尤其主要数学家)的圈子,这样你就能得到那些没有公开印刷的圈子里流行的不成熟的数学前沿内容。终极要求,如果你是一个超级数学天赋携带者,了解数学全貌,并能发现潮流与未来数学进展的偏差,你能真正知道潜在大进展不在当今潮流内或者你能发现在潮流之外的大东西,在你没做出来前,不想与任何人交流,恭喜你,你很可能会一鸣惊人,如果你接地气的话。
在中国,因为不存在数学物理大师,中国数学人只能在最低层次的数学前沿晃荡。出国以后,你可以在中等层次的数学前沿中受数学大师的指导。因此,这就是为什么中国数学人不能做出大一点的数学成就的主要原因,你所在的人际环境,国家(权力)体制,思想禁锢,传统文化都注定是绊脚石。这就是科学和民主自由体制是相伴相生的原因,科学和民主都是普世的,不承认普世价值的环境不可能出大科学成就。中国数学人没有产生过数学巨匠,所以不可能进入终极数学前沿,中国数学人只能做跟随者。
在数学前沿,你会有非常多的困惑和选择,尤其你进入中层数学前沿阵地,接触了很多外国数学大师之后,你会发现,同一个数学问题可以有不同的思考方式,而且每个都能解决一部分问题,但是这些不同的思维方法又不是相通协调的,你也不知道那个能走通,也许一个都不行,你怎么办?你要自己思考权衡和选择,一旦选错,你基本白费功夫,非常不划算。这时就要靠你自己的数学天赋了,没人能帮你。很多情况下,就是数学道路的选择,不能迷信那些数学大家的方法,他们不是万能的。比如你按对称性来选取不变量,所有不对称的object被归为一平凡极端类,当然这达到了一个完整分类的目的,但是这不能解决你的问题,实际上,那些不对称的类的object数量远比对称的多,如果按某个不对称的不变量,那么对称性的object就是平凡类了,但是这个不对称不变量你找不出来,而且极端困难。实际上这在拓扑学中很普遍,比如亏格拓扑群之类的东西,数论中的素数分布及丢潘图通解,微分几何中也不少,绝大多数极端重要的东西都是不规则的就算他们有某种规律也隐藏很深。
做前沿数学,一定的旧的数学基础知识(比如微积分,数论,非欧几何,代数拓扑,代数几何,群论,环理想)是需要的,但不一定全部挖掘学习,更重要的是你的数学天赋,没有天赋不是寸步难行,而是不能前行。
普通数学家只能研究热点问题追潮流,但潮流不等于高引用,而是厉害数学家的看法。超级天赋携带者追求真正数学发展方向而不随潮流,他们才能做出惊世之功。天赋永远是数学研究的第一要素。所以进入数学前沿,你要估计自己的天赋,否则成民科。
另外,前沿问题的解决决不能平凡化,比如Robinson的 Non-standard analysis完全就是平凡化,在普通数学分析吊上一个无穷外壳,实际没有任何有意义的思想和构造,也不解决真正几何问题和insight,这就是民科行为发生在专业数学人上的例子,另一个例子是模糊数学。一个通用理论构造必须要带来不平凡的东西,一个有意义的计算构造一定要解决一个具体的计算难题。
--
FROM 163.204.84.*
【 在 remote000 的大作中提到: 】
: 关于天赋,我们一向以为是成为一流数学家的必要条件(直觉上天赋是生来(上天)决定的吗?这就无可避免的落入神创论里面了)。但其实回过头来,这个观念是否成为限制我们成就的一个障碍?
: 如果把数学和日常的吃穿住行等同,只是一个生活的方式,一个对待世间的方式,那么他和天赋无关。平常心对待,破除种种观念的束缚,不追求目标,在这个研究过程中,我们可以遇到挫折,也有可能遇到不可思议的奇迹。
关于数学天赋,请允许我引用某位知乎用户的回答吧:怎样看出一个人有数学天赋? - 知乎
https://www.zhihu.com/question/264096978/answer/277486263
--
FROM 163.204.84.*
【 在 piglake 的大作中提到: 】
: 完了没,挺有意思的
已经全部都写在上面了
--
FROM 163.204.84.*