求压缩包收藏
【 在 vinbo (vinbo) 的大作中提到: 】
: 标 题: 经典教材与文献推荐
: 发信站: 水木社区 (Tue Dec 21 16:48:09 2021), 转信
:
: 不急,一点一点来
:
: 先贴个Arnold推荐的,这个列表是Arnold在Dynamical Systems III Mathematical Aspects of Classical and Celestial Mechanics[Encyclopaedia of Mathematical Sciences3]V.I.Arnold(1988,Springer Berlin Heidelberg)里推荐的
:
: Recommended Reading
: [1] Abraham, R.; Marsden, J.E.: Foundations of mechanics. 2nd ed. Reading, Mass.: The
: Benjamin/Cummings Publishing Company, Inc. m-XVI, XXII, 806 p. (1978). Zbl. 397.70001
: [2] Alekseev, V.M.: Quasirandom dynamical systems. I, 11, III Mat. Sb., Nov. Sero 76, No. 1,
: 72-134 (1968) (Russian); 77, No. 4, 545-601 (1968) (Russian); 78, No. 1, 3-50 (1968) (Russian);
: English transI.: Math. USSR, Sb. 5, No. 1, 73-128 (1968); 6, No. 4, 505-560 (1968);
: 7, No. 1, 1-43 (1969). Zbl. 198,569; Zbl. 198,570; Zbl. 198,570
: [3] Alekseev, V.M.: Final motions in the three-body problem and symbolic dynamics Usp.
: Mat. Nauk 36, No. 4, 161-176 (1981) (Russian); English transI.: Russ. Math. Surv. 36,
: No. 4, 181-200 (1981). Zbl. 503.70006
: [4] Anosov, D. V.: Geodesic flows on c10sed Riemannian manifolds of negative curvature
: Tr. Mat. Inst. Steklova 90, 210 p. (1967) (Russian); English transI.: Proc. Steklov Inst.
: Math. 90 (1967). Zbl. 163,436
: [5] Appell, P.: Traite de mecanique rationnelle. Tomes 1-2. 4e M. Paris: Gauthier-Villars
: (1919/1924)
: [6] Arnol'd, V. 1.: Proof of A. N. Kolmogorov's theorem on the preservation of quasi-periodic
: motions under small perturbations of the Hamiltonian. Usp. Mat. Nauk 18, No. 5, 13-40
: (1963) (Russian); English transI.: Russ. Math. Surv. 18, No. 5, 9-36 (1963). Zbl. 129, 166
: [7] Arnol'd, V.I.: Small denominators and problems of stability of motion in c1assical and
: celestial mechanics. Usp. Mat. Nauk 18, No. 6,91-192 (1963) (Russian); English transI.:
: Russ. Math. Surv. 18, No. 6, 85-192 (1963). Zbl. 135,427
: [8] Arnol'd, V. I.: Mathematical methods of classical mechanics. Moskva: Nauka. 431 p. (1974).
: (Russian); English trans!.: New York-Heidelberg-Berlin: Springer-Verlag. X, 462 p. (1978).
: Zbl. 386.70001
: [9] Arnol'd, V.I.: Geometrical methods in the theory of ordinary differential equations. Moskva:
: Nauka. (1978) (Russian); English trans!.: New York-Heidelberg-Berlin: SpringerVerlag.
: XI, 334 p. (1983). Zbl. 507.34003
: [10] Birkhoff, G.D.: Dynamical systems. Am. Math. Soc. Colloq. Publ. IX. New York: American
: Mathematical Society. VIII, 295 p. (1927).
: [11] Bogolyubov, N.N.: On some statistical methods in mathematical physics. L'vov: Akad.
: Nauk Ukr. SSR. 139 p. (1945). (Russian)
: [12] Bogolyubov, N.N.; Mitropol'skij, Yu.A.: Asymptotic methods in the theory ofnonlinear
: oscillations. 2nd ed. Moskva: Nauka. 408 p. (1958). (Russian); English transI.: Delhi: Hindustan
: Publ. Corp.; New York: Gordon and Breach Science Publ. V, 537 p. (1961). Zbl.
: 83,81
: [13] Cartan, E.: Leyons sur les invariants integraux. Paris: Hermann. X, 210 p. (1922). Jrb.
: 48,538
: [14] Chaplygin, S.A.: Investigations in the dynamics of nonholonomic systems. Moskva-Leningrad.
: (1949). (Russian)
: [15] Charlier, c.L.: Die Mechanik des Himmels. Bd. I, 11. 2. Aufl. Berlin: Walter de Gruyter.
: VIII, 488 p.; VIII, 478 p. (1927). Jrb. 53, 892
: [16] Dirac, P.A.M.: On generalized Hamiltonian dynamics. Can. J. Math. 2, No. 2, 129-148
: (1950). Zbl. 36, 141
: [17] Hertz, H.: Die Prinzipien der Mechanik in neuem Zusammenhange dargestellt. Ges. Werke,
: Bd.3. Leipzig: Barth. (1910). English transI.: New York: Dover Publications, Inc. 274 p.
: (1956). Zbl. 74, 388
: Recommended Reading 277
: [18] Jacobi, c.G.J.: Vorlesungen über Dynamik. Berlin: G. Reimer Verlag (1884)
: [19] Karapetyan, A.V.; Rumyantsev, V.V.: Stability of conservative and dissipative systems.
: Itogi Nauki Tekh., Sero Obshch. Mekh. 6,132 p. (1983). (Russian). Zbl. 596.70024
: [20] Kozlov, V.V.: Methods of qualitative analysis in the dynamics of a rigid body. Moskva:
: Izdatel'stvo Moskovskogo Universiteta. 232 p. (1980). (Russian). Zbl. 557.70009
: [21] Kozlov, V.V.: Integrability and non-integrability in Hamiltonian mechanics. Usp. Mal.
: Nauk 38, No. 1, 3-67 (1983) (Russian); English transI.: Russ. Math. Surv. 38, No. 1, 1-76
: (1983). Zbl. 525.70023
: [22] Kolmogorov, AN.: On conservation of conditionally periodic motions under small perturbations
: of the Hamiltonian. Dokl. Akad. Nauk SSSR 98, No. 4, 527-530 (1954). (Russian).
: Zbl. 56, 315
: [23] Kolmogorov, AN.: General theory of dynamical systems and classical mechanics. Proc.
: Int. Congr. Math, 1954, Amsterdam 1,315-333 (1957). (Russian); English trans!.: Appendix
: in [1]. Zbl. 95, 171
: [24] Lagrange, 1.L.: Mecanique analytique. (Euvres de Lagrange, Vols. 11-12 Paris: GauthierVillars
: (1888-1889)
: [25] Moiseev, N.N.: Asymptotic methods of nonlinear mechanics. 2nd ed. Moskva: Nauka.
: 400 p. (1981). (Russian). Zbl. 527.70024
: [26] Moser, 1.: Convergent series expansions for quasi-periodic motions. Math. Ann. 169, 136-
: 176 (1967). Zbl. 149,299
: [27] Moser, 1.: Lectures on Hamiltonian systems. Mem. Am. Math. Soc. 81, 60 p. (1968). Zbl.
: 172,114
: [28] Moser, 1.: Stable and random motions in dynamical systems. Ann. Math. Stud. 77, VIII,
: 199 p. (1973). Zbl. 271.70009
: [29] Moser, 1.: Various aspects of integrable Hamiltonian systems. Dynamical systems,
: C. 1. M. E. Lect., Bressanone 1978. Prog. Math. 8, 233-290 (1980). Zbl. 468.58011
: [30] Nejmark, Yu.1.; Fufaev, N.A: Dynamics of nonholonomic systems. Moskva: Nauka.
: 520 p. (1967). (Russian); English transI.: Transl. Math. Monogr., Am. Math. Soc. 33. IX,
: 518 p. (1972). Zbl. 171,455
: [31] Nekhoroshev, N. N.: An exponential estimate of the time of stability of nearly-integrable
: Hamiltonian systems. Usp. Mat. Nauk 32, No. 6, 5-66 (1977) (Russian); English trans!.:
: Russ. Math. Surv. 32, No. 6,1-65 (1977). Zbl. 383.70023
: [32] Nitecki, Z.: Differentiable dynamies. An introduction to the orbit structure of diffeomorphisms.
: Cambridge, Mass.-London: The M.1.T. Press. XV, 282 p. (1971). Zbl. 246.58012
: [33] Poincare, H.: Les methodes nouvelles de la mecanique celeste. Vols. 1-3. Paris: GauthierVillars.
: (1892/1893/1899); New York: Dover Publications, Inc. Vol. I: 382 p.; Vol. 11:
: 479 p.; Vol. 111: 414 p. (1957). Zbl. 79, 238
: [34] Siegel, C. L.: On the integrals of canonical systems, Ann. Math., 11. Sero 42, No. 3, 806-822
: (1941). Zbl. 25, 265
: [35] Siegel, c.L.: Uber die Existenz einer Normalform analytischer Hamiltonscher Differentialgleichungen
: in der Nahe einer Gleichgewichtslosung. Math. Ann. 128, 144-170 (1954).
: Zbl. 57, 320
: [36] Siegel, c.L.; Moser, J.: Lectures on celestial mechanics. Berlin-Heidelberg-New York:
: Springer-Verlag. XII, 290 p. (1971). Zbl. 312.70017
: [37] Smale, S.: Topology and mechanics. I, 11. Invent. Math. 10, No. 6, 305-331 and 11, No. 1,
: 45-64 (1970). Zbl. 202, 232; Zbl. 203, 261
: [38] Variational principles ofmechanics. Collection ofpapers. Moskva: Fizmatgiz. 932 p. (1959).
: (Russian). Zbl. 87, 170
: [39] Whittaker, E. T.: A treatise on the analytical dynamics of particles and rigid bodies. 4th
: ed. Cambridge: Cambridge University Press XIV, 456 p. (1960). Zbl. 91, 164
: [40] Williamson, 1.: On the algebraic problem concerning the normal forms oflinear dynamical
: systems. Am. 1. Math. 58, No. I, 141-163 (1936). Zbl. 13,284
: [41] Williamson, J.: The exponential representation of canonical matrices, Am. J. Math. 61,
: No. 4,897-911 (1939). Zbl. 22,100
: [42] Wintner, A: The analytical foundations of celestial mechanics. Princeton: Princeton University
: Press. XII, 448 p. (1941). Zbl. 26, 23
: --
:
: ※ 来源:·水木社区
http://www.mysmth.net·[FROM: 211.161.243.*]
--
FROM 120.230.66.*