https://mp.weixin.qq.com/s/iUwB6AtdHTWxz76pY5GohA 线上课程Short course:Monge-Ampere equations
TMSE 国家天元数学东南中心 2023-05-17 17:55 发表于福建
图片
线上课程Short course:Monge-Ampere equations
★
★ ★ ★
★
授课专家
Professor Lei Ni (University of California, San Diego)
短课程介绍
课程名:Monge-Ampere equations
摘要:This course is an introduction to the real and complex Monge-Ampere equations. We will discuss weak solutions, maximum principles, apriori estimates, and Liouville-type theorems of real and complex Monge-Ampere equations.
参考文献:
Figalli, Alessio. The Monge-Ampère equation and its applications. Zurich Lectures in Advanced Mathematics. European Mathematical Society, 2017.
先修课程和准备知识:
(1) Evans and Han-Lin: Parts on the weak solutions and viscosity solutions.
(2) Gilbarg-Trudinger: Parts on Krylov-Safanov estimate and fully nonlinear PDEs.
(3) Aubin: Parts on complex Monge-Ampere equations.
更多相关文献:
(1) Evans, Lawrence C.. Partial differential equations. Second edition. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010.
(2) Han, Qing; Lin, Fanghua. Elliptic partial differential equations. Second edition. Courant Lecture Notes in Mathematics, 1. Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2011
(3) Gilbarg, David; Trudinger, Neil S.. Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, 2001.
(4) Aubin, Thierry. Some nonlinear problems in Riemannian geometry. Springer Monographs in Mathematics. Springer-Verlag, 1998.
授课时间与内容
图片
授课地点
腾讯会议:627634279 密码:978305
--
FROM 211.161.218.*