- 主题:老师问什么是有理数
可以这样定义无理数,不过依赖小数表示会很麻烦。用差集方式定义有理数更麻烦,需要全集也就是实数定义。
【 在 jryang2015 的大作中提到: 】
: 作为工作15年的理工科生,我记得无理数的定义好像是无限不循环小数。。。
:
: 有理数就是除了无理数的就是有理数。
: ...................
--
FROM 114.246.236.*
你自己就不懂吧。你这里找来有理数、分数的定义已经够乱了,十进小数的定义错得甚至都没考虑无穷情形,后面用dedekind分割定义无理数的部分则没做到数系的正确嵌入,隐含着让无理数与有理数处于不同层级的问题(比如没法计算)。
数系扩张是个技术活,必须成体系按规矩来。而实数的理解本来就是高等数学的重点和难点,初等数学阶段不作要求也很难说清楚,能说清楚的就是有理数。
有理数的本质不复杂,就是整数之比,当然分母不为零。搞清楚数学概念重要,纠结字眼在数学上意义不大。
这背后容易让人迷惑的,其实是对“数”朴素理解是不明晰的、有歧义的。它可以是数的抽象概念、数的表示方法,以至于更艰涩一点的数的构造、数的公理化刻画之类。
我们说分数或者循环小数,这是数的表示方法;说有理数、实数,这是数集的抽象概念。在描述有理数的抽象概念时,就要考虑到其性质和表示:可以用分数(整数之比,分母不为零)表示法来定义有理数,这是因为任一(抽象概念上的)有理数都能这样表示,而且反过来任一分数表示也都是一个有理数,这才能构成定义。类似地也可以用无穷小数表示法来定义有理数,所有有理数都可以表示为循环无穷小数(有限小数看做末尾0循环或9循环),所有循环无穷小数也都是有理数,那也可以构成有理数定义。数学教材期待学生掌握这种定义性质,即所有有理数都满足这种性质,所有满足这样性质的数都是有理数。数学教学也在训练这种思维模式。
【 在 one23 的大作中提到: 】
: 真是基础教育的悲哀。找了点资料,可以凑合看看
:
: 1)有理数的定义:我们把0和每一个正或负的整数或分数统称为有理数。
: ...................
--
FROM 114.249.211.*
其实是这样的。看教材上用语“分数形式”,应该明白,在课本体系中,分数是一种数的表示形式。5 就可以写成分数 5/1 或者 15/3。数还有其他表示形式,比如 5 还可以写成 5.0 或者 5.0000…(循环)。
那么首先就应该区分数、数的表示形式这两件事。正如汉字五、英文词five、阿拉伯数字5,都是表示同一抽象概念一样。
如果不区分清楚这个,按照“整数和分数”这种描述,就可能犯把 1/2 当成有理数,而把 0.5 不当成有理数的问题。或者更糟糕一点,就是这个定义没法实际应用。
数学定义实际上是要给出一个概念的性质,不多不少地把这个概念界定出来,使得对这个概念的一切后续分析都从这个性质出发。这个性质可以叫定义性质。对一个概念可以从不同角度给出定义性质,这些性质本质上是等价的。
有理数的“可写成分数形式”这个性质就不多不少地界定了这个概念。应用起来,整数 5,就可以写成 5/1,从而是有理数;而 √2 则无法写成分数形式,就不是有理数。
分类“整数和分数”,可能是以前小学教材教学次序来,先学习整数,再引入分数,这些当然都是有理数而且有理数也都能这么写。不过这里没说清楚的是,分数是作为一种形式出现(排除掉了 0.5)还是作为概念出现(与有理数重复),甚至隐藏着整数是不是在分数范筹内(5/1 是分数吗)的问题。
【 在 happyyuans 的大作中提到: 】
: 孩子说有理数包括整数和分数。
: 老师让看课本。我看了下课本,写着:能写成分数形式的是有理数。
:
: ...................
--
FROM 114.249.211.*
小学有小学的理解能力和叙述方式,中学可以加深,数学专业文献(数论、代数、分析、集合论等方向都有相关论述)可以叙述得更严谨但可能也更晦涩。理解性质是最重要的,没必要过分追求严格叙述。
对有理数,掌握它与整数之比的表示等价,就是最重要的。现行小学课本的写法已经可以了。
你愿意读更专业的数学书,很多都可以说得比较严谨,比如《陶哲轩实分析》的第二章,已经从自然数讲起。如果从公理集论角度讲,比如科大汪芳庭《数学基础》那样,则可能更晦涩。但不论怎么长篇累牍,有理数通常都是用整数之比这一性质定义的。
【 在 one23 的大作中提到: 】
: 都是别人的东西,就是学着看、试着理解的。
: 你有加清晰的原始类的定义性的文字,麻烦也罗列一下,我在对比着看看。
: 【 在 milksea 的大作中提到: 】
: ...................
--
修改:milksea FROM 114.249.211.*
FROM 114.249.211.*
你对数学概念的感觉不太准确。比如,1.0 也是有限小数,1.0000… 也是无限循环小数。
0.9999…和1.0000…是整数1的两种等价的无穷小数表示,类似1/1和5/5也都是整数1的两种等价的分数表示。
小数表示法确实方便比较数的大小,但这主要限于有限小数。你看你自己就没搞明白0.9999…=1.0000…这个事实。
【 在 herolulu 的大作中提到: 】
: 我觉得:有理数=整数+有限小数+无限循环小数,这个定义是规范完整的
:
: 分数是有理数的一种表现形式,但有个数:0.9999.... 是无法用分数表达的
: ...................
--
FROM 114.249.211.*