- 主题:这道初中几何题,算什么难度的题?
初二还没有圆。初二用轴对称画辅助线,用全等也可以证,难度比压轴题稍难一些
【 在 weiminglake 的大作中提到: 】
: 延长AB到E,做EC垂直于AC,点ADCE共圆,圆周角和圆心角,不用我多说了吧。
- 来自 水木说
--
FROM 223.104.40.*
初二超纲啦
【 在 thierryhenry 的大作中提到: 】
: 以AB为对称轴,做C、D点的镜像C',D'(也就是下面变成三个正三角形)
: C、D、C'、D'都在以B为圆心,BC为半径的圆上
: AB交圆于一点A’,D'A'D切的弦DD'等于DA'C切的弦CD,所以...
- 来自 水木说
--
FROM 223.104.40.*
【 在 wfunny 的大作中提到: 】
: 初二还没有圆。初二用轴对称画辅助线,用全等也可以证,难度比压轴题稍难一些
: -来自水木说
- 来自 水木说
--
FROM 223.104.40.*
为啥A,A'重合?初中有这个定理?
【 在 thierryhenry 的大作中提到: 】
: 以AB为对称轴,做C、D点的镜像C',D'(也就是下面变成三个正三角形)
: C、D、C'、D'都在以B为圆心,BC为半径的圆上
: AB交圆于一点A’,D'A'D切的弦DD'等于DA'C切的弦CD,所以...
- 来自 水木说
--
FROM 223.104.40.*
这个题,使用初二上全等三角形章节角平分线小节的知识就可以解,而且套用娃该章节的常规题的结论结果,证明这个也不复杂。
角格点记不清了。
不过,这个让我想起了讨论的比较热的提前学的一点问题。很多问题都是有很多种解法的,如果会用角格点解答方法,也许就不会用几何圆的解答方法,用几何圆的解答,就不太愿意用全等三角形的解答方法。 数学提前学,可能会对当前的数学知识的学习造成干扰。进而影响当前知识的深入理解。
数学老师都是极力反对提前学的。我的父母是高中数学老师,也极力反对提前学。
【 在 nisus 的大作中提到: 】
: 角格点问题只有有限多个,可以枚举出来.
: 当然,谁也记不住.
: 以前有个巨牛逼的日本妹子搞了个三外心法.
- 来自 水木说
--
FROM 223.104.40.*
用初中的定理,不能直接得到adce共圆吧?
【 在 weiminglake 的大作中提到: 】
: 延长AB到E,做EC垂直于AC,点ADCE共圆,圆周角和圆心角,不用我多说了吧。
- 来自 水木说
--
FROM 223.104.40.*
记得初中时,可用的4点共圆的几个常用判断条件
1. 4个点到同一点距离相等
2. 4个点组成的4边形,对角和180
3. 一条边和另外2个点组成的2个三角形顶点相等
不记得还有其它的可用的判定条件啦
【 在 weiminglake 的大作中提到: 】
: 初二如果没学圆的话够呛,初三学了的话就可以。
- 来自 水木说
--
FROM 223.104.40.*
D做AB的对称点D',AD是CAD'的角平分线。同时得DC=DD'。基于此条件,正好是初二上角平分线的常见练习题。
所以这个题,对于初二上的娃,不见得困难。
【 在 netherlands 的大作中提到: 】
: 这里哪来的角平分线?是2倍角
- 来自 水木说
--
FROM 223.104.40.*