- 主题:一道初中几何题
我不需要向你们证明什么。
1 这道题用座标法一定可解,而且解与你们的结果一定是一样的。
2 这类题可以设计出来无数道,你们做的再多,也就是掌握几十个,上百个套路而已,
而且过一段时间就会遗忘。
3 存在通用的解法。但只靠刷题是不可能得到的。
【 在 laofu 的大作中提到: 】
: 主任,不蒸馒头争口气,他们认定了你搞不定,你就秀给他们看看,证明主任你不象他们想的那么蠢。
--
FROM 139.209.150.*
你不用激我了,你可以自己去做。
这类题两种解法,一种座标法,只要选取合适的座标系,都可以证出来。一种是几何证
法。两种是一致的。
这类题有无数道,你不可能都刷到了。
只要你加入苏格拉底的行列,这些都可以告诉你。
【 在 qlogic 的大作中提到: 】
: 坐标法能做出来,但是你做不出来
--
FROM 139.209.150.*
其实不用严格抠这个。各种方法都是一致的。内在之间一定可以相互转化。
【 在 webhost 的大作中提到: 】
: 说了连角平分线定理和相似都还没学,你认为用解析几何的办法合适吗?
--
修改:Hihere001 FROM 139.209.150.*
FROM 139.209.150.*
靠这样刷题基本不可能理解这类问题。
方向就是错了。
简言之刷的都是套路,不是内在的。
可以看看为什么中国的教育环境下不出数学家,科学家,也就知道了。
【 在 webhost 的大作中提到: 】
: 方法一致的道理是没错,但是路还是得一步一步走过来,饭还是得一口一口吃下去才能长大。
--
修改:Hihere001 FROM 139.209.150.*
FROM 139.209.150.*
讲真,用座标法,只要有耐心,都可以转化成最初等的办法。
再说了,前面也都用到了相似,再就是什么“平行线分线段成比例”之类的。
应该去注重培养学生去发现这种内在的逻辑关联。
不要好像一定强调用什么方法,好像挺深奥的,其实,真的,这可能只是国内的教育的
理解。
【 在 lixianghui 的大作中提到: 】
: 苏格拉底也都没学这些吧。
--
FROM 139.209.150.*
天天刷题是没用的。你看这个版上,大体是名校毕业,几十岁了,不整天还在研究这几道初
中题吗。
【 在 lixianghui 的大作中提到: 】
: 那个数学家,科学家不是在中国的教育环境下出的?
--
FROM 139.209.150.*
这些题都有通用解法。
【 在 lixianghui 的大作中提到: 】
: 这个版就是干这个用的啊。说你智商低,你还不承认?
--
FROM 139.209.150.*
但是你不知道。
你知道的都是特例。只能够一道一道的记下去。
【 在 lixianghui 的大作中提到: 】
: 废话
--
FROM 139.209.150.*
你可以试试。再拿一道,你还是头痛。
【 在 lixianghui 的大作中提到: 】
: 说你智商低,还真是。
--
FROM 139.209.150.*
两条直线求交点,这不会吗?
我没有你那种打谁脸的观念。我一直都是在谈问题。就你们这些人,整天觉得好像谁打脸、谁打脸似的。
【 在 qlogic 的大作中提到: 】
: 我不是激你,我是真认为你不会做
: 欢迎打脸
:
--
FROM 139.209.150.*