水文?还是川大哪个老师在做这方面研究
【 在 kepu0830 的大作中提到: 】
: 在睡眠相关疾病的研究中,睡眠呼吸暂停居于多数。睡眠呼吸暂停人群通常在夜间会出现打鼾、憋气等症状。患有睡眠呼吸暂停综合征的人在睡觉时会反复停止呼吸,呼吸停止时长通常为10~30秒,一晚上可达数百次。睡眠呼吸暂停是一种与睡眠相关的呼吸障碍,如果同时引起慢性低氧血症及高碳酸血症,则通常被称为睡眠呼吸暂停综合征。
: 睡眠多导图监测通常被用于睡眠呼吸暂停的判定和确诊,但睡眠多导图人工分析是一项耗时耗力的工作,因此自动判定睡眠呼吸暂停显得尤为重要。在汉斯出版社《生物物理学》期刊中,有论文介绍了睡眠呼吸暂停的各种人工智能分类方法,通过对不同方法的分类结果进行对比讨论,显示基于深度学习对多通道数据进行多任务分析是未来关于睡眠呼吸暂停研究的主流方法。
: 深度神经网络通过从传感器的输入信号中寻找某种模式来自动生成特征。并且在很多相关的研究中是直接使用原始数据作为输入直接进行睡眠呼吸事件的分类的,即不需要再进行繁琐的特征提取。并且深度神经网络的应用能够有效地提升判定准确率。但是现阶段,这方面的工作也存在着一些不足。第一个是在不同的研究中研究人员所使用的数据不尽相同,导致了并不能单纯的从文章中所得到的结果进行对比,难以复现其中的模型。第二个是在使用深度学习来进行睡眠呼吸事件分类的研究尚没有一个很好的可解释性。另外还存在着睡眠数据不够多等问题。
: ...................
--
FROM 112.65.12.*