- 主题:[讨论]设计一个小实验,看能说明点啥?
不会,全过程中二者之间无相对运动,秤和砝码都只受重力作用。
【 在 md2006 的大作中提到: 】
: 难得你还能涉及具体问题,多谢!我还想问一句:自由落体中的电子秤上的砝码不显示刻度(重量),那么,竖直上抛中的电子秤上的砝码会显示刻度(重量)吗?
--
FROM 114.84.192.103
【 在 templarsf 的大作中提到: 】
: 不会,全过程中二者之间无相对运动,秤和砝码都只受重力作用。
:
再问:假如我们拿一个透明弹性球,内置微型电子秤和砝码来做自由落体、竖直反弹运动的实验,该球体与地面的碰撞假设是完全弹性碰撞(无耗损),也不计空气阻力的影响(或者超真空),那么,在球体触地反弹的瞬间,电子秤上的砝码会显示刻度吗?同时,该球体是否会反弹回下落开始时的高度?
该实验是否可以说明:物体在改变运动方向的时候不必一定需要将速率减小为零,而通常情况下是需要的。
不能再问了,再问就有刁民的嫌疑,嘿嘿
--
修改:md2006 FROM 223.79.30.*
FROM 223.79.30.*
反弹时砝码反向的速度v=(砝码质量+球+秤质量)/砝码质量*撞击前的v
球的速度如果砝码质量足够小,就是-v
你问的都是很简单的中学物理题目
碰撞时显示的刻度=delta(mv)/delta(t),过程中显然是先受力减速到零再加速到反
向的v。
【 在 md2006 的大作中提到: 】
: 再问:假如我们拿一个透明弹性球,内置微型电子秤和砝码来做自由落体、竖直反弹运动的实验,该球体与地面的碰撞假设是完全弹性碰撞(无耗损),也不计空气阻力的影响(或者超真空),那么,在球体触地反弹的瞬间,电子秤上的砝码会显示刻度吗?同时,该球体是否会反弹
: 回下落开始时的高度?
: 该实验是否可以说明:物体在改变运动方向的时候不必一定需要将速率减小为零,而通常情况下是需要的。
: ...................
--
FROM 114.84.192.103
【 在 templarsf 的大作中提到: 】
: 反弹时砝码反向的速度v=(砝码质量+球+秤质量)/砝码质量*撞击前的v
: 球的速度如果砝码质量足够小,就是-v
: 你问的都是很简单的中学物理题目
: ...................
你的这个分析适用于蹦床,蹦床运动是这样的一个过程:匀加速下落——触网(速度最大)减速——减速至零时反向加速——加速至最大值——匀减速上升。
而上面所说的刚性球体自由下落碰到刚性地面反弹的瞬间,假如速度减小至零,因为时间趋于无限短,加速度就会变得非常大,设球体触地时的瞬时速率为50米每秒,在趋于无限小的时间内减速为零,估算一下此时发码的重量?
前面我讲的是在理想状态下的情形,理想状态是做不到的,但可以提高实验精度,无限接近。最后还是需要在高速摄影下的实验观察,现在的高速摄影最高能达到惊人的每秒600万张。最常见的是光线在逆反射时的情形,此时的光粒子不需要减速至零就可以实现逆向折回
相类似的还有伽利略的斜面实验,不断提高斜面的倾角,直至90度
--
修改:md2006 FROM 223.79.30.*
FROM 223.79.30.*
delta(t)在现实世界不可能为零,你这个没必要那么复杂,就是两个小球弹性碰撞,
转移了一些动量,问这个时候作用力是多大的问题而已。
反正f=delta(mv)/delta(t)。你爱怎么假定delta(t)都是你的自由,肯定现实世
界不会为零就是了。
你测到的那玩意不叫砝码的重量,叫秤对砝码支持力的大小,在相对加速度不为零的情况下,这个支持力和重量没固定关系。
【 在 md2006 的大作中提到: 】
: 你的这个分析适用于蹦床,蹦床运动是这样的一个过程:匀加速下落——触网(速度最大)减速——减速至零时反向加速——加速至最大值——匀减速上升。
: 而上面所说的刚性球体自由下落碰到刚性地面反弹的瞬间,假如速度减小至零,因为时间趋于无限短,加速度就会变得非常大,设球体触地时的瞬时速率为50米每秒,在趋于无限小的时间内减速为零,估算一下此时发码的重量?
: 前面我讲的是在理想状态下的情形,理想状态是做不到的,但可以提高实验精度,无限接近。最后还是需要在高速摄影下的实验观察,现在的高速摄影最高能达到惊人的每秒600万张。最常见的是光线在逆反射时的情形,此时的光粒子不需要减速至零就可以实现逆向折回
: ...................
--
修改:templarsf FROM 114.84.192.103
FROM 114.84.192.103