自1922年天文学家雅各布·卡普坦(Jacobus Kapteyn)首次提出星系中可能存在不可见
的物质以来,人类对暗物质的探索已经度过了近一百个春秋,却依旧没能揪住这诡秘物
质的一丁点尾巴。暗物质研究领域中总是流传着这样的冷笑话——暗物质确实是回事儿
!(Dark matter is matter.)然而玩笑背后,这样一种看不见摸不着,只能凭借引力
感受的物质也着实让科学家们抓破了头。
图片
捉摸不定,从未现身
由于不会辐射电磁波,同时也不吸收和反射电磁波,同重子物质之间也仅存在引力相互
作用,暗物质的存在直到近代才逐步被发现和确认。最初弗里茨·兹威基(Fritz Zwic
ky)与扬·奥尔特(Oort,Jan Hendrik)分别敏锐地发觉,星系中应当存在更多看不到
的物质(茨威格从后发星系团出发,而奥尔特从银河系出发),这些物质的存在直到薇
拉·鲁宾(Vera Cooper Rubin)开始观测星系的自转曲线才初见端倪。
图片
如果只有重子物质存在,星系自转曲线应当同红线一般在星系外围迅速衰减,然而实际
的观测却发现并非如此,这意味着星系外围有着大量“看不到”的物质存在。率先发现
这一现象的科学家之一便是杰出的女性科学家薇拉·鲁宾
星系被包裹在巨大的暗物质团块当中,这些团块我们称之为暗物质晕。如果只有那些可
以发光的重子物质,星系外围的自转曲线本应符合牛顿力学和开普勒定律,很快地在星
系外侧削减为零,但实际上由于暗物质晕的存在,它们呈现出平坦的图形,这同只有重
子物质存在的星系自转曲线是截然不同的。
除此之外,由于存在引力作用,恒星或者星云的光在经过暗物质晕的时候会被扭曲,从
而形成引力透镜现象。因为暗物质本身不发光,所以暗物质作为引力透镜是极为理想的
。借助于这一工具,我们甚至能探测到星系碰撞时暗物质晕同中间的星系发生分离的子
弹星系团现象。然而以上探测方法都属于间接测量,暗物质的属性是如此捉摸不定,时
至今日,科学家仍未能直接(在粒子物理层面上)探测到暗物质的存在。
暗物质的候选物浮出水面
最初天文学家们认为所谓的暗物质,正是那些在宇宙中不发光的天体的总和——黑洞、
褐矮星、行星等天体,它们被称为晕族大质量高密度天体(Massive Astrophysical Co
mpact Halo Objects,简称:MACHOs)。虽然这些天体不发光或者发光极其微弱,但我
们依然可以通过微引力透镜效应(当质量较小的透镜天体经过背景天体前方时引起的持
续时间较短的亮度暂时上升现象)来观测到它们。
图片
发生碰撞的星系X射线波段观测(红色)与通过引力透镜计算出的暗物质团块(蓝色)位
置分布的图像,由于暗物质同重子物质不发生碰撞,因此在子弹星系团中会先超过星系
,从而发生星系和暗物质晕中心错位的现象。版权/NASA
波兰天文学家波丹·巴钦斯基(Bohdan Paczynski)在20世纪80年代发起了对麦哲伦星云
的MACHO巡天计划,对大小麦哲伦星云进行了多次长时间观测,以寻找其中的微引力透镜
事件。然而巡天项目结果表明,至少在大小麦哲伦星云中,MACHOs的数量远远无法满足
暗物质的存在所需要的质量,因此这一假说很快便被否定了,因此科学家们只好向基本
粒子寻求解答。
无法形成小结构的热暗物质
中微子和一些轻子是最先进入科学家视角的基本粒子,它们质量很小,呈电中性,同时
可以在宇宙中大量存在。只不过中微子质量极小,在宇宙中甚至可以接近光速运动,这
就意味着它们在宇宙早期冷却下来的时间较晚,甚至比重子物质还要更晚。这些粒子被
作为热暗物质(Hot Dark Matter,简称HDM)的候选物。
暗物质模型被提出的时候恰逢计算机技术兴起,多体模拟得以在计算机中实现,因此科
学家们就能够以这些粒子的性质作为变量,使用计算机来对于宇宙的演化进行数值模拟
,热暗物质粒子是最先被丢进这类模拟当中的。但在数值模拟之下,热暗物质模型也是
最先被踢出暗物质候选者阵营的。
这是由于热暗物质模型中,暗物质粒子是一些能量极高的轻粒子,它们速度很快,在宇
宙演化中要很晚才能冷却减速依附在星系周围形成暗物质晕。然而依据宇宙微波背景的
观测结果,宇宙是从一个高度均匀的状态开始膨胀的,在这个前提下,热暗物质粒子无
法在数值模拟中形成星系这样“小尺度”(在宇宙之中,星系的尺度的确小的可怜)的
团块,然而在宇宙中我们已经能够观测到低于热暗物质阈值的小尺度结构,所以这一模
型很难对现有的小尺度结构进行解释,自然就被从候选者中排除了。
似乎完美的冷暗物质
有了热暗物质作为参考,冷暗物质(Cold Dark Matter,简称CDM)模型也便应运而生,
这类模型是对那些质量较大的,速度更小的粒子的统称,它们被称为弱相互作用大质量
粒子(Weakly Interacting Massive Particles,简称WIMPs)。弱相互作用大质量粒子
是质量和相互作用强度都在电弱相互作用量级的基本粒子,不参与电磁和强相互作用。
由于WIMPs本身的物理性质极其不活泼,因此很难直接寻找到它们,不过基于这种猜想,
众多物理实验得以建立起来。
同时,基于冷暗物质模型的宇宙学模拟也如火如荼地进行起来,天体物理学家詹姆斯·
皮尔布斯(James Peebles, 因为其在宇宙学领域的诸多贡献,2019年被授予了诺贝尔
物理学奖)率先利用多体模拟技术实现了对冷暗物质宇宙模型的数值模拟。科学家们惊
奇的发现,这种暗物质模型几乎完美地再现了整个可观测宇宙的现况。
虽然粒子物理学家还没能抓住一颗暗物质粒子,不过计算宇宙学的科研人员们已经在硬
盘中模拟出了整个宇宙随着暗物质和重子物质共同演化的过程。冷暗物质模型对于宇宙
的还原是如此贴切,时至今日仍旧是暗物质候选者中的大热门。无碰撞的冷暗物质模型
能够很好地符合如今的观测结果——在大部分时候,事实上,在数值模拟中可以使用的
粒子数与计算机的数据处理速度都大幅提升后,科学家们发现:它也并非完美。
首先出现的是尖顶&内核问题(cusp and core proplem)。冷暗物质模型的密度分布符
合NFW密度曲线(Navarro,Frenk & White density profile, 这一密度分布形式以构
建它的三名科学家命名),这意味着在冷暗物质模型的中心,物质密度将会是发散的,
也就是说暗物质晕的中心存在一个密度极高,甚至是无穷大的区域。而实际上这样无穷
大的区域并不存在,虽然星系的中心往往存在超大质量黑洞,但是冷暗物质模型中的高
密度中心的尺度比超大质量黑洞要大得多,所以两者无法一概而论。
图片
数值模拟中,热(左)、温(中)、冷(右)暗物质模型,在宇宙早期(上)以及现在
(下)阶段宇宙中的物质分布结构,随着暗物质“温度”逐渐降低,能够形成的小尺度
结构就越密集。版权/苏黎世大学
除了尖顶与内核问题,在冷暗物质模拟当中出现的另一个问题也很快凸显出来,冷暗物
质模拟的结果显示了大量的小尺度结构——比热暗物质多得多。就像人们所说的,旱的
旱死,涝的涝死,冷暗物质宇宙在模拟下出现的众多精细结构完全没有被现有观测手段
所观测到——但这倒也在情理之中。
由于冷暗物质宇宙当中,暗物质粒子比重子物质更早冷却下来,形成暗物质晕,然后重
子物质再逐渐落入其中形成星系团和星系。因此对于那些很小的暗物质晕,将只会有很
少的重子物质落入其中,甚至有些更小的暗物质晕中将没有任何重子物质。在人类现有
的探测能力下,这些暗物质子结构本身就很难被发现,更不必说统计他们的数量了。
图片
冷暗物质(左)与自相互作用暗物质模型(右)中暗物质分布的示意图,图中颜色越红
代表密度越大。版权/林航平
不过敏感的科学家们很快就意识到,如果稍微改变模型,无论是尖顶与内核问题,还是
过多的子结构问题都将得到解决,温暗物质(Warm Dark Matter,简称:WDM)模型应运
而生。
探索暗物质晕的极限
暗物质的属性决定了我们很难直接接触并研究这种物质,不过好在它的诸多性质还是能
够进行间接测量。
科学家们真的有办法直接找到暗物质晕吗?有可能。暗物质晕本身不发光的特性使得它
们成为了绝佳的引力透镜天体,利用引力透镜效应,我们可以“轻松”找到这些暗物质
晕。只不过宇宙是如此浩瀚,即便星辰遍布天穹,暗物质晕大量存在,暗物质晕恰好位
于恒星之前的概率依旧非常低。
图片
哈勃望远镜对超暗矮星系Leo IV的光学波段观测,里面真的什么都看不着。版权/NASA
而暗物质的数值模拟之路也尚未到头。宇宙级别的演化所需要的计算量远远超出现有人
类所有的计算机,但我们可以通过逐级放大的方法将这偌大的宇宙逐渐放大,最终得到
足够“微观”的宇宙结果。对各种暗物质模型的深入研究,正吸引着大批科研工作者。
虽然冷暗物质模型目前为广大天文学者所认同,但这一模型中仍旧存在诸多问题暂时无
法得到合理的解释。
暗物质的本质究竟为何?也许再过几年——或者几十年,我们终将揭开暗物质的神秘面
纱;也或许,如同可控核聚变那样,我们距离暗物质的真相永远还差50年。
--
FROM 113.102.161.*