https://mp.weixin.qq.com/s/fwvT55EI73-0JSCEwaFJlw1. 什么是机器学习?
机器通过分析大量数据来进行学习。比如说,不需要通过编程来识别猫或人脸,它们可以通过使用图片来进行训练,从而归纳和识别特定的目标。
2. 机器学习和人工智能的关系
机器学习是一种重在寻找数据中的模式并使用这些模式来做出预测的研究和算法的门类。机器学习是人工智能领域的一部分,并且和知识发现与数据挖掘有所交集。
3. 机器学习的工作方式
①选择数据:将你的数据分成三组:训练数据、验证数据和测试数据;
②模型数据:使用训练数据来构建使用相关特征的模型;
③验证模型:使用你的验证数据接入你的模型;
④测试模型:使用你的测试数据检查被验证的模型的表现;
⑤使用模型:使用完全训练好的模型在新数据上做预测;
⑥调优模型:使用更多数据、不同的特征或调整过的参数来提升算法的性能表现。
4. 机器学习所处的位置
①传统编程:软件工程师编写程序来解决问题。首先存在一些数据→为了解决一个问题,软件工程师编写一个流程来告诉机器应该怎样做→计算机遵照这一流程执行,然后得出结果;
②统计学:分析师比较变量之间的关系;
③机器学习:数据科学家使用训练数据集来教计算机应该怎么做,然后系统执行该任务。首先存在大数据→机器会学习使用训练数据集来进行分类,调节特定的算法来实现目标分类→该计算机可学习识别数据中的关系、趋势和模式;
④智能应用:智能应用使用人工智能所得到的结果,如图是一个精准农业的应用案例示意,该应用基于无人机所收集到的数据。
发自「今日水木 on Redmi K30」
--
FROM 119.34.165.*