Generic Poincare-Bendixson Theorem for systems with invariant 2-cones and applications to SEIRS-models
时间 Datetime
2021-12-31 15:00 — 16:00
地点 Venue
腾讯会议 APP3()
报告人 Speaker
王毅
单位 Affiliation
中国科学技术大学
邀请人 Host
王楷植
备注 remarks
ID:320-182-081 PIN:123456
报告摘要 Abstract
In this talk, we will review the fundamental theory, as well as recent progress, of monotone dynamical systems. We further consider a smooth flow with an invariant k-cone, a closed set that contains a linear subspace of dim-k and no linear subspaces of higher dimension. We show that orbits with initial data from an open dense (called generic) subset of the phase space are either pseudo-ordered or convergent to equilibria. For k=1, this covers the celebrated Hirsch's Generic Convergence Theorem in monotone dynamical systems. For k=2, it yields an iteresting generic Poincare-Bendixson Theorem. An application to SEIRS-models with nonlinear incidence rates will be presented to show the possibility of generic convergence to periodic orbits. This talk is based on a series of joint works with Lirui Feng, Jianhong Wu and Jinxiang Yao.
-------------------
简介:王毅,中国科技大学数学科学学院教授、博士生导师。2002年获得中国科技大学理学博士学位。曾应邀对美国佐治亚理工学院、芬兰赫尔辛基大学、美国明尼苏达大学IMA研究所长期学术访问,现任中国科大数学科学学院副院长。主要研究领域为微分方程与动力系统,先后在包括JEMS、 Adv. Math、 Proc. London Math. Soc.、SIAM J. Math. Anal.、JDE、Tans. Amer. Math. Soc.等国际杂志发表论文30余篇。2004年入选全国百篇优秀博士论文,2007年入选教育部新世纪优秀人才支持计划,2018年获基金委国家杰出青年科学基金资助。
--
FROM 211.161.243.*