(在网络画板
https://www.netpad.net.cn/svg.html#posts/945283 拖动A'点可以看到P的轨迹)
猜想:当AA'中垂线PT和单位圆相切时PA最小,再使用向量法求AA'的长度。
因为OT和A'A均垂直于PT,则OT//A'A,且OT是单位向量,所以,OT=A'A/|A'A|,
另外M是A'A的中点,同样MT垂直于A'A,则对应向量点积为0,A'A.MT =0
A'A.MT = A'A . (OT - OM) = A'A.OT - A'A.OM
= A'A.A'A/|A'A| - A'A . (OA'+OA)/2
= |A'A|^2/|A'A| - (OA - OA') . ( OA + OA') / 2
= |A'A| - (OA^2 - OA'^2)/2
= |A'A| - (|OA|^2 - |OA'|^2)/2
= |A'A| - (2^2 - 1^2)/2 (因为|OA'|=1, |OA| = 2)
= |A'A| - 3/2 = 0
得|A'A| = 3/2
又|OA|^2 = (OA'+A'A)^2 = 1+9/4+2*OA.A'A = 4
则2*OA.A'A = 3/4
故|TA'|^2 = TA'^2 = (OA' - OT) ^ 2
= OA'^2 + OT^2 - 2*OA'.OT
= 1+2-2*OA'.A'A
= 3-3/4
= 9/4
得|TA'| = 3/2
即PA最小时|AA'| = |TA'| (此时TAA'是等边三角形)
【 在 xiangyin 的大作中提到: 】
: 这道题怎么确定最小值?
[upload=2][/upload]
※ 修改:·Elale 于 Dec 19 17:14:25 2023 修改本文·[FROM: 123.116.113.*]
※ 来源:·水木社区
http://www.mysmth.net·[FROM: 123.116.113.*]
修改:Elale FROM 123.116.113.*
FROM 123.116.113.*