gpt现在能证明欧式几何证明题吗,上网搜了下,没看见实例或者证据
【 在 fanci 的大作中提到: 】
这是怎么做到的,是不是连接了符号计算库,不然仅靠阅读数学课本很难提炼出不定积分能力吧?
问:Let X be a standard normal random variable. What is the expectation of the absolute value of X?
答:The expectation of the absolute value of a standard normal random variable X can be computed as follows:
E[|X|] = ∫_{-∞}^{∞} |x| * f(x) dx
where f(x) is the probability density function of the standard normal distribution, given by:
f(x) = (1 / sqrt(2π)) * exp(-x^2 / 2)
Using the symmetry properties of the standard normal distribution, we can write:
E[|X|] = 2 * ∫_{0}^{∞} x * f(x) dx
Substituting the expression for f(x) and simplifying, we obtain:
E[|X|] = 2 * ∫_{0}^{∞} x * (1 / sqrt(2π)) * exp(-x^2 / 2) dx
This integral can be evaluated using integration by substitution, letting u = x^2 / 2 and du = x dx, and simplifying:
E[|X|] = 2 * ∫_{0}^{∞} sqrt(2 / π) * exp(-u) du
Using the fact that ∫_{0}^{∞} exp(-u) du = 1, we can simplify further:
E[|X|] = 2 * sqrt(2 / π) * ∫_{0}^{∞} exp(-u) du
E[|X|] = 2 * sqrt(2 / π)
Therefore, the expectation of the absolute value of a standard normal random variable X is 2 * sqrt(2 / π), which is approximately equal to 1.1284.
--
FROM 218.66.91.*