- 主题:一个史瓦西解的问题
爱因斯坦广义相对论方程的史瓦西解,在黑洞角动量为零的时候,黑洞视界面上发生了时空翻转,黑洞外垂直于视界面的空间向量变成了黑洞内的时间向量,黑洞外的时间向量,变成了空间向量。
我倒腾了半天,发现这里的时间向量,好像没有时间箭头啊!根本没法区分过去和现在!
是不是推导错了,还是这玩意儿就这样?
--
FROM 221.216.117.*
这个事儿里面,“时空翻转”什么的,纯粹是标题党/震惊体。其实无非就是视界外选作坐标的那套矢量场,到了视界内有一个原来类空的变类时了,原来类时的变类空了。这可能算是个“有意思”的事儿,但也没多“本质”。在视界内重新选一套坐标系就得了……
【 在 T0OLD 的大作中提到: 】
: 爱因斯坦广义相对论方程的史瓦西解,在黑洞角动量为零的时候,黑洞视界面上发生了时空翻转,黑洞外垂直于视界面的空间向量变成了黑洞内的时间向量,黑洞外的时间向量,变成了空间向量。
: 我倒腾了半天,发现这里的时间向量,好像没有时间箭头啊!根本没法区分过去和现在!
: 是不是推导错了,还是这玩意儿就这样?
--
修改:molar FROM 111.201.70.*
FROM 111.201.70.*
还是很有意思的,你推导一下就知道了。
比如黑洞外观半径有限,那么时空反转之后变成黑洞内的时间,这就说明黑洞内的时空存在时间有限。
再比如黑洞外观存续时间(如果黑洞足够大,不会因霍金辐射蒸发消失的话),那么就代表黑洞内的空间几乎是无限大的。
还有更有意思的,时空互换,(垂直于黑洞视界面的)速度定定义会发生变化,变成原来速度的倒数。即原来的距离/时间,变成了时间/距离。这个相对论变换我还没倒腾清楚,但如果和牛顿力学差别不是太大的话,可能黑洞内的速度就会有下限,而不是上限……这显然是有些荒谬的,如果深入推导下去,把这个荒谬点消掉,可能会得出一些很有意思的结论。
另外和速度定义类似,质量也会被重新定义,可能也要变成原来质量的倒数。也就是说轻的变重,重的变轻……我不知道基础物理学界的重子、轻子(速度超光速)猜想是否来源于此。
……
最后,黑洞继续发生质量变化的过程(可能是吸纳物质质量变大,也可能是和大质量天体互相缠绕释放引力波质量变小),导致其半径的变化……也就是垂直于视界的黑洞半径,即黑洞内的时间,变化……其实就是时、空联动变化。如果把这种黑洞内部的时、空联动方式解析出数学表达式,比较它和黑洞外时空联动变化表达式,其实也就是广义相对论数学表达式,之间的差异,然后再通过对广义相对论数学表达式本身进行修正,让黑洞内外的这个时、空联动数学表达式能够等价……这基本就是个大统一理论的纯数学研究路径了。
【 在 molar 的大作中提到: 】
: 这个事儿里面,“时空翻转”什么的,纯粹是标题党/震惊题。其实无非就是视界外选作坐标的那套矢量场,到了视界内有一个原来类空的变类时了,原来类时的变类空了。这可能算是个“有意思”的事儿,但也没多“本质”。在视界内重新选一套坐标系就得了……
:
--
FROM 221.216.117.*
上课的时候推过了。只是,再怎么说,它也就是个坐标现象而已。毕竟,史瓦西度规中 r=2M 处的奇性是可去的,换一套坐标系,就可以把视界内外的坐标统一起来了。
然后,如果对类似黑洞合并这样的过程感兴趣,并且关心视界附近的度规行为的话,那做解析是有点儿困难,除非是一些特定条件下,做数值模拟则比较现实。只不过这种情况下,史瓦西可能不大够,起码应该得用克尔了,到时候就看你要关心内外哪个视界附近的行为了,而且这里面还有闭合类时线呢,写小说都更带劲不是……
【 在 T0OLD 的大作中提到: 】
: 还是很有意思的,你推导一下就知道了。
: 比如黑洞外观半径有限,那么时空反转之后变成黑洞内的时间,这就说明黑洞内的时空存在时间有限。
: 再比如黑洞外观存续时间(如果黑洞足够大,不会因霍金辐射蒸发消失的话),那么就代表黑洞内的空间几乎是无限大的。
: ...................
--
修改:molar FROM 111.201.70.*
FROM 111.201.70.*
呃,我不是科班出身,是自己下街吧自学微分几何鼓捣的。
你说的这些变换能给简单讲讲不?或者推荐些晚上资料,数学推导那种,我自己去啃。
克尔黑洞我还没看呢,直觉这玩意应该比史瓦西复杂得多。
【 在 molar 的大作中提到: 】
: 上课的时候推过了。只是,再怎么说,它也就是个坐标现象而已。毕竟,度规中 r=r_{视界} 处的奇性是可去的,换一套坐标系,就可以把视界内外的坐标统一起来了。不管咋说,这时空在视界附近,都木有啥关键的整体几何量是不连续的。
: 然后,如果对类似黑洞合并这样的过程感兴趣,并且关心视界附近的度规行为的话,那做解析是有点儿困难,除非是一些特定条件下,做数值模拟则比较现实。只不过这种情况下,史瓦西可能不大够,起码应该得用克尔了,到时候就看你要关心内外哪个视界附近的行为了,而且这里面还有闭合类时线呢,写小说都更带劲不是……
:
--
FROM 223.104.41.*
变换的话,可以查查“Kruskal坐标”。顺便还能解锁啥叫“白洞”。
广义相对论的话,最好还是弄本儿书系统的看一看,各种trick蛮多的。肯自己下功夫学微分几何的话,可以看梁老师那本儿。B站上还有他讲课的视频。
至于克尔黑洞,一般教科书多少都会讲讲,肯定是比史瓦西复杂一些,不过一则比那俩还是简单很多的,再则性质也更为丰富不少,有不少有意思的现象。比如之前的电影《星际穿越》里面,那飞船最后用黑洞加速的方法,就是利用了克尔黑洞能层的性质,从Penrose过程中获取的能量。
说到克尔,老爷子七老八十了,居然现在还在搞科研,前一阵子还在achive上放了篇文章,真是不服不行。。。
【 在 T0OLD 的大作中提到: 】
: 呃,我不是科班出身,是自己下街吧自学微分几何鼓捣的。
: 你说的这些变换能给简单讲讲不?或者推荐些晚上资料,数学推导那种,我自己去啃。
: 克尔黑洞我还没看呢,直觉这玩意应该比史瓦西复杂得多。
: ...................
--
修改:molar FROM 111.201.70.*
FROM 111.201.70.*
虽然我不太懂,但我觉得你说得好像不太对
【 在 T0OLD 的大作中提到: 】
: 还是很有意思的,你推导一下就知道了。
: 比如黑洞外观半径有限,那么时空反转之后变成黑洞内的时间,这就说明黑洞内的时空存在时间有限。
: 再比如黑洞外观存续时间(如果黑洞足够大,不会因霍金辐射蒸发消失的话),那么就代表黑洞内的空间几乎是无限大的。
: ...................
--
FROM 122.206.190.*
咋感觉有点悟道阴阳的意境?...
【 在 T0OLD 的大作中提到: 】
: 还是很有意思的,你推导一下就知道了。
: 比如黑洞外观半径有限,那么时空反转之后变成黑洞内的时间,这就说明黑洞内的时空存在时间有限。
: 再比如黑洞外观存续时间(如果黑洞足够大,不会因霍金辐射蒸发消失的话),那么就代表黑洞内的空间几乎是无限大的。
: ...................
--
FROM 221.220.176.*
解的角度,视界内时间确实是双向的
【 在 T0OLD 的大作中提到: 】
: 爱因斯坦广义相对论方程的史瓦西解,在黑洞角动量为零的时候,黑洞视界面上发生了时空翻转,黑洞外垂直于视界面的空间向量变成了黑洞内的时间向量,黑洞外的时间向量,变成了空间向量。
: 我倒腾了半天,发现这里的时间向量,好像没有时间箭头啊!根本没法区分过去和现在!
: 是不是推导错了,还是这玩意儿就这样?
: ...................
--
FROM 223.70.153.*