水木社区手机版
首页
|版面-课后习题研究(XiTiYanJiu)|
新版wap站已上线
展开
|
楼主
|
同主题展开
|
溯源
|
返回
上一篇
|
下一篇
|
同主题上篇
|
同主题下篇
主题:Re: [求助]中学几何证明题请教
nwn
|
2023-10-11 09:04:02
|
采用极限的思路很简单
若 AB≠CD,不妨设 AB>CD,则取 P→A,则 AP+DP→AD,BP+CP→AB+AC=AD+(AB-CD)
因此 AP+DP<BP+CP,矛盾
【 在 tyjhit 的大作中提到: 】
: 平面内一条直线上按顺序排列着A、B、C、D四个点,若直线外任意点P都满足 AP+DP > BP+CP。证明AB = CD
: 非常感谢!
--
FROM 171.8.225.*
上一篇
|
下一篇
|
同主题上篇
|
同主题下篇
选择讨论区
首页
|
分区
|
热推
BYR-Team
©
2010.
KBS Dev-Team
©
2011
登录完整版