设∠ADE=x, DE=a*sqrt(3)/(3*sin(30+x)) ,DF=a*sqrt(3)/(6*cosa),S=1/2*DE*DF*sin120, 积化和差后,当x=30时候,最小S=a^2*sqrt(3)/18,此时CEDF为平行四边形。
EF^2=DE^2+DF^2+DE*DF, h=2S/EF, 1/h^2=4/3*EF^2/(DE^2*DF^2)=4/3*(1/DF^2+1/DE^2+1/(DE*DF)),带入化简后,1/h^2=4/a^2 * (3+9/4*cos2x+3sqrt(3)/4*sin2x),当x=15时,hmin=(3-sqrt(3)/6*a,此时EF//AB。
--
FROM 61.152.216.52