【 在 AGust2022 的大作中提到: 】
注:极值判别,x=b/2时,判别极值方法。
x=(b/2)*(1-δ)时,
f'{(b/2)(1-δ)} = a/[(b/2)*(1-δ)]- (b/2)*(1-δ)+ b
= (-b*b/4)*(2/b)(1+δ') - (b/2)(1-δ) + b
= -(b/2)*(1+δ')-(b/2)*(1-δ) + b
= -(b/2)*(2+δ'-δ)+b <0.
同理,f'{(b/2)(1+δ)}>0.(这句是错的,我想当然了)
~~~~~~~~~~~~~~~~~~~~~~~~~
f'{(b/2)(1-δ)} = a/[(b/2)*(1-δ)]- (b/2)*(1-δ)+ b
= (-b*b/4)*(2/b)(1+δ') - (b/2)(1-δ) + b
= -(b/2)*[1/(1-δ)]-(b/2)*(1-δ) + b
= -(b/2)*[1/(1-δ) +1-δ]+b
=-(b/2)*[2 + δ/(1-δ)-δ]+b
=-(b/2)*[2 + (δ-δ+δ*δ)/(1-δ)]+b
=-(b/2)*[2+δ*δ/(1-δ)]+b
显然,取δ>0,在b/2领域内,有f'[(b/2)(1-δ)]=-(b/2)*[δ*δ/(1-δ)]<0.
取δ<0,也有f'[(b/2)(1-δ)]<0。
这样,在b/2下左导数、右导数均<0.可以判别重根为驻点。
昨天误判了,想当然了。
--
FROM 112.10.213.*