- 主题:双生子佯谬问题需要使用广义相对论
这么给你定性描述一下吧:
对于A(地球)来说,B以0.995C的速度(洛伦兹因子正好10)去往30光年外的C点,稍作停留后又以0.995C的速度返回,耗时约60年。
对于B来说,一个恍惚,世界压扁了,C点变成3光年处,然后整个世界在以0.995C运动。到C点与自己重合时大概耗时3年。又一个恍惚,世界恢复了,回首A点已经在30光年之外停着,而A已经老了30年了。又一个恍惚,世界又压扁了,A已经在3光年外了,已经老了57年了,并以0.995C向自己飞奔。3年后,AB重逢,自己过了约6年,A已经过了60年了。
恍惚的那几下,可以用广义相对论细算,不考虑也不影响结论,就像中学物理题“不考虑碰撞过程”,结果就是B参照系速度、位置和时间发生了跳变。A和B不可能同时为惯性系。非要把B当惯性系,那就该A恍惚了。AB相逢,BC相逢,AB再相逢,时空中的三个事件,三角形。非要把B的世界线拉直,A的世界线就截断了。
【 在 ltdw 的大作中提到: 】
: 在闵氏坐标下,如果以A的世界线作为Y轴,结果比较简单。反之以B为Y轴,不知道该怎么画?还是说速度突变会导致积分结果有一个很大的负项?
: 另外我的那种假设中,B是啥感觉?因为直觉看来前后两个匀速运动中两边时间流速应该是一样的,那是否意味着变速导致了时间的突变?
: 我觉得还有一个问题就是通信的问题,如果不需要相逢,仅通过光速通信告知AB年龄,此时又会发生什么呢?是否由于光速限制导致通信无效,正好会抵消钟慢效应?亦或者确实a可以远距离知道b慢了?
: ...................
--
FROM 202.120.48.*
话说B离开和B返回是两个不同的惯性系,即使不考虑加速过程,在离开这个参考系观察和
在返回这个参考系观察也是不同的,我印象里怎么记得有人算过光考虑这两个参考系的不同
就可以解决佯谬了?
【 在 molar 的大作中提到: 】
: B有加速度,是非惯性系……
--
FROM 223.70.153.*
我不懂世界线,如果世界线属于运动学范畴,那你的论述显然不正确。如果把双生子详谬归结为运动学问题,则兄弟的观测完全是对称的,因为运动学中,加速度也是相对的。以兄的视角,弟掉头返回,则以弟的视角,兄掉头返回,这完全的是对称的,所以如果把这个问题完全归为运动学,则答案必须是一样老,这是对称性的制约。而把它归为广义相对论范畴问题,其实就明确了这是动力学问题,涉及惯性系非惯性系了,本质变了,这样对称性就不起作用了。
个人觉得还得用广义相对论解决。
【 在 molar 的大作中提到: 】
: 不涉及弯曲时空,不需要广义相对论。经典版本的双子佯谬,算一下俩兄弟各自的世界线线长然后比一比就成,完全可以在狭义相对论范畴内解决……
:
--
FROM 111.199.106.*
1,图像上应该就是原来的图翻过来。但是,因为B是非惯性系,所以各种公式都会变,要加惯性力。度规也不是简单的(-1,1)了。
2,“感觉”的话,可以逐段算算线长来看,线长是绝对的。
3,带上“通讯”也就是给原问题上加个花儿,变复杂点儿不多。可以花个时空图看看,真的上手算算,没有本质区别。
【 在 ltdw 的大作中提到: 】
: 在闵氏坐标下,如果以A的世界线作为Y轴,结果比较简单。反之以B为Y轴,不知道该怎么画?还是说速度突变会导致积分结果有一个很大的负项?
: 另外我的那种假设中,B是啥感觉?因为直觉看来前后两个匀速运动中两边时间流速应该是一样的,那是否意味着变速导致了时间的突变?
: 我觉得还有一个问题就是通信的问题,如果不需要相逢,仅通过光速通信告知AB年龄,此时又会发生什么呢?是否由于光速限制导致通信无效,正好会抵消钟慢效应?亦或者确实a可以远距离知道b慢了?
: ...................
--
FROM 223.104.97.*
原则上也可以,这个就是俺前面帖子说的分别考虑前后两段单算的方式。
不过一则,这个是计算技巧,它不改变B的运动作为一个整体是非惯性运动的事实;再则,如果B做更复杂的运动,则需要把这计算技巧一般化。
总之,这些都不妨碍,这个问题的本质就是:分别算算两条世界线段的长度,然后比比看谁长
【 在 freesoul 的大作中提到: 】
: 话说B离开和B返回是两个不同的惯性系,即使不考虑加速过程,在离开这个参考系观察和
: 在返回这个参考系观察也是不同的,我印象里怎么记得有人算过光考虑这两个参考系的不同
: 就可以解决佯谬了?
--
FROM 223.104.97.*
俺不晓得这里“运动学”和“动力学”是咋分的,但在平直时空中,“惯性系与非惯性系”的区别,就是有没有“加速度”。不可能“加速度是相对的”,“惯性系与非惯性系”的区别却是绝对的,这是自相矛盾的……
【 在 a358 的大作中提到: 】
: 我不懂世界线,如果世界线属于运动学范畴,那你的论述显然不正确。如果把双生子详谬归结为运动学问题,则兄弟的观测完全是对称的,因为运动学中,加速度也是相对的。以兄的视角,弟掉头返回,则以弟的视角,兄掉头返回,这完全的是对称的,所以如果把这个问题完全归为运动学,则答案必须是一样老,这是对称性的制约。而把它归为广义相对论范畴问题,其实就明确了这是动力学问题,涉及惯性系非惯性系了,本质变了,这样对称性就不起作用了。
: 个人觉得还得用广义相对论解决。
:
--
FROM 223.104.97.*
抛开这个重逢问题,
如果A和B以0.995C相互远离,如何理解A和B都认为对方时间变慢了?
这种"认为变慢"是由于意识和观察都不能超过光速造成的吗?
【 在 molar 的大作中提到: 】
: 1,图像上应该就是原来的图翻过来。但是,因为B是非惯性系,所以各种公式都会变,要加惯性力。度规也不是简单的(-1,1)了。
: 2,“感觉”的话,可以逐段算算线长来看,线长是绝对的。
: 3,带上“通讯”也就是给原问题上加个花儿,变复杂点儿不多。可以花个时空图看看,真的上手算算,没有本质区别。
: ...................
--
FROM 220.248.28.*
抛开这个重逢问题,
如果A和B以0.995C相互远离,如何理解A和B都认为对方时间变慢了?
这种"认为变慢"是由于意识和观察都不能超过光速造成的吗?
能向我定性描述一下吗?
【 在 robot 的大作中提到: 】
: 这么给你定性描述一下吧:
: 对于A(地球)来说,B以0.995C的速度(洛伦兹因子正好10)去往30光年外的C点,稍作停留后又以0.995C的速度返回,耗时约60年。
: 对于B来说,一个恍惚,世界压扁了,C点变成3光年处,然后整个世界在以0.995C运动。到C点与自己重合时大概耗时3年。又一个恍惚,世界恢复了,回首A点已经在30光年之外停着,而A已经老了30年了。又一个恍惚,世界又压扁了,A已经在3光年外了,已经老了57年了,并以0.995C向自己飞奔。3年后,AB重逢,自己过了约6年,A已经过了60年了。
: ...................
--
FROM 220.248.28.*
所以持续一阵子受到力,能延年益寿?
【 在 ltdw 的大作中提到: 】
: 按照别人的说法,B是能感觉到加减速的力的,A是感觉不到的。所以A和B不等价
: - 来自 水木社区APP v3.5.7
--
FROM 12.207.231.*
在广义相对论中,这个力实际不存在,只是引力造成的时间扭曲。
但是现在帖子里讨论的是不考虑广义相对论,没有受到这个力,
只要高速运动,相对的参照物来说,时间也是变慢的。
但是我无法感性理解这一点
【 在 chenlaoxian 的大作中提到: 】
: 所以持续一阵子受到力,能延年益寿?
:
--
FROM 220.248.28.*